MOTILAL NEHRU NATIONAL INSTITUTE OF TECHNOLOGY ALLAHABAD

B. Tech. in MECHANICAL ENGINEERING SCHEME OF INSTRUCTION AND SYLLABI For B. Tech. Program

(Effective from 2022-23)

DEPARTMENT OF MECHANICAL ENGINEERING

Vision and Mission of the Institute

Motilal Nehru National Institute of Technology Allahabad

VISION

To attain a distinct identity for the Institute through innovation, knowledge creation and dissemination for the benefit of the society.

MISSION

- To nurture an eco-system for continuous enhancement of value-based teaching and learning process in the emerging areas of technology.
- To train quality human and knowledge resources in the service of society.
- To develop sustainable products and technologies.

Vision and Mission of the Department

VISION

To be a centre of excellence in Mechanical, Production and Industrial Engineering education and research for the benefits of society and humanity.

MISSION

- To educate and develop competent human resources for contemporary industry, academia and research.
- To promote interdisciplinary research and innovation skills in the graduates.
- To enhance the efforts to develop sustainable products, processes and technologies by developing competent entrepreneurs for the benefit of the society.

Brief about the Department:

The Department of Mechanical Engineering is one of the oldest department of the institute and was established in the year 1961. We are the largest community of excellent, energetic, and dynamic faculty, staff and students in the institute. The department is having highly qualified and experienced faculty (36 faculty members) in all streams of Mechanical Engineering. The department is broadly divided into three academic streams in which students receive outstanding education with a wide choice of specializations, electives and research areas. These three academic streams are: Design Engineering, Production and Industrial Engineering and Thermal Engineering.

The department offers eight semester (i.e. 4 year) Bachelor of Technology (B. Tech.) programmes in Mechanical Engineering and Production and Industrial Engineering. Every year 223 students are admitted through JEE (mains) and 15% of this intake is through Direct Admission to Students Abroad (DASA) scheme for the above two B. Tech. programmes. Some students are also through ICCR and MEA (Govt. of India) Schemes.

The department also offers four semester (i.e. 2 year) Master of Technology (M. Tech.) programmes in Computer Aided Design and Manufacturing, Design Engineering, Product Design and Development, Production Engineering and Thermal Engineering. Every year 125 students (25 in each specialization) are admitted through GATE in the above five M. Tech. programmes.

The department also offers Doctor of Philosophy (Ph.D.) programme in various areas of Mechanical Engineering as well as Production and Industrial Engineering. The strength of the department lies in its Ph.D. programme with more than 100 PhDs already been awarded till March, 2022. About 80 research scholars are presently pursuing their PhDs. Every year the department admits Ph.D. students equal to half of the number of faculty holding Ph.D. degree. The department is also a QIP centre for PhD and M. Tech programmes.

Today, the world of Mechanical Engineering changes under the influence of advanced computational tools, improved simulation and analysis, and entirely different manufacturing protocols. This has opened up new vistas of research in the department.

Program	Title of the Program
P. Tooh	Mechanical Engineering
D. Tech.	Production & Industrial Engineering
	Computer Aided Design and Manufacturing
	Design Engineering
M. Tech.	Product Design and Development
	Production Engineering
	Thermal Engineering
Ph.D.	Mechanical Engineering

List of Programmes offered by the Department:

B. Tech. – Mechanical Engineering

Program Educational Objective

PEO-1	To transform our students into employable technologists through education and training to contribute in the frontiers of Mechanical Engineering.
PEO-2	To groom the graduates for achieving team work capability and leadership qualities.
PEO-3	To impart multidisciplinary competence in the graduates for exploring ventures in Government, Public, Private, R&D and entrepreneurial sectors.
PEO-4	To imbibe ethical and human values in the graduates for the benefit of the society.

Program Articulation Matrix

PEO Mission Statement	PEO1	PEO2	PEO3	PEO4
To educate and develop competent human resources for contemporary industry, academia and research.	3	3	2	3
To promote interdisciplinary research and innovation skills in the graduates.	2	3	2	2
To enhance the efforts to develop sustainable products, processes and technologies by developing competent entrepreneurs for the benefit of the society.	2	2	3	2

1-Slight; 2-Moderate; 3-Substantial

B. Tech. – Mechanical Engineering

Program Outcomes

PO-01	Engineering Knowledge: Apply knowledge of mathematics, science and engineering
	fundamentals and Mechanical Engineering specialization to the solution of complex
	Engineering problems related to Mechanical Engineering.
PO-02	Problem Analysis: Identify, formulate, research literature and analyze complex
	Mechanical Engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences and engineering sciences.
PO-03	Design/ Development of Solutions: Design solutions for complex Mechanical
	Engineering problems and design system components or processes that meet specified
	needs with appropriate consideration for public health and safety, cultural, societal and
	environmental considerations.
PO-04	Conduct investigations: Conduct investigations of complex Mechanical Engineering
	problems using research-based knowledge and research methods including analysis,
	interpretation of data and synthesis of information to provide valid conclusions.
PO-05	Modern Tool Usage: To apply appropriate techniques, resources and engineering and IT
	tools for modeling of different Mechanical Engineering problems with an
	understanding of the limitations.
PO-06	The Engineer and Society: Apply contextual knowledge to assess societal, health, safety,
	legal and cultural issues and the consequent responsibilities relevant to professional
	engineering practice.
PO-07	Environment and Sustainability: Understand the impact of professional Engineering
	solutions in societal and environmental contexts and demonstrate knowledge of and need
	for sustainable development.
PO-08	Ethics: Apply ethical principles and commit to professional ethics responsibilities and
	norms of Engineering practice.
PO-09	Individual and Team Work: Function effectively as an individual, and as a member or
	leader in diverse teams as well as in multi disciplinary settings.
PO-10	Communication: Communicate effectively on complex Mechanical Engineering
	activities with the engineering community and with society at large, such as being able
	to comprehend and write effective reports and design documentation, make effective
	presentations and give and receive clear instructions.
PO-11	Project Management and Finance: Demonstrate knowledge and understanding of
	Mechanical Engineering and management principles and apply these to one's own work,
	as a member and leader of a team, to manage projects and in multidisciplinary
	environments.
PO-12	Life-long Learning: Recognize the need for the preparation and ability to engage in
	independent and life- long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

PSO-01	Graduates will be able to apply fundamental knowledge of sciences and engineering to			
	identify, comprehend, formulate, design and analyse real life problems in Mechanical			
	Engineering and allied multidisciplinary fields.			
PSO-02	Graduates will be able to apply the acquired computational, experimental and soft			
	skills to solve Mechanical Engineering problems, interact and work coherently in a			
	team environment, develop life-long learning, scientific skills and distincti			
	managerial traits.			

SCHEME OF INSTRUCTION

B. Tech. Mechanical Engineering (Base) – Course Curriculum Structure

S. No.	Code	Course	Credit	L-T-P	Contact Hours
Semeste	r-I	-			
1	CYN11502	Engineering Chemistry	4	2-1-2	5
2	MAN11101	Mathematics-I	4	3-1-0	4
3	HSN11600	Professional Communication	3	2-0-2	4
4	AMN11101	Materials Science and Engineering	3	3-0-0	3
5	MEN11101	Engineering Thermodynamics	3	3-0-0	3
6	MEN11602	Workshop and Manufacturing Processes	2	1-0-2	3
7	IDN11600	Environment and Climate Change	2	2-0-0	2
8	EAN12701- EAN12707	Extra Academic Activity -A	2	0-0-4	4
		Total	23		28
Semeste	r-II	-			
1	PHN12502	Engineering Physics	4	2-1-2	5
2	MAN12106	Mathematics-II	4	3-1-0	4
3	CSN12601	Introduction to Artificial Intelligence and Machine Learning	3	2-0-2	4
4	MAN12107	Computer based Numerical and Statistical Techniques	3	2-0-2	4
5	AMN12400	Engineering Mechanics (by AMD for ME)	3	2-0-2	4
6	MEN12601	Engineering Graphics	2	1-0-2	3
7	EAN12700	Professional Ethics and Social Values	2	0-0-4	4
		Total	21		28
Semeste	er-III				
1	AMN13101	Mechanics of Materials	4	3-0-2	5
2	MEN13101	Energy Conversion Technologies	4	3-0-2	5
3	AMN13104	Fluid Mechanics and Hydraulic Machines	4	3-0-2	5
4	MEN13102	Heat and Mass Transfer	4	3-0-2	5
5	MEN13103	Industrial Engineering	3	3-0-0	3
6	EEN13200	Basic Electrical and Electronics	3	2-0-2	4
7	EAA-B	Extra Academic Activity-B	2	0-0-4	4
		Total	24		31

Semester-IV					
1	MEN14101	Computer Aided Geometrical Modelling 4 3-		3-0-2	5
2	MEN14103	Manufacturing Science and Technology - I	4	3-0-2	5
3	HSN14601	Management Concepts and Applications	3	3-0-0	3
4	AMN13106	Kinematics and Dynamics of Machines	3	3-0-0	3
5	MEN14104	Metrology and Quality Engineering	3	3-0-0	3
6	MEN14102	Instrumentation and Process Control	4	3-0-2	5
7	MEN14251-	Core Elective Course - 1	3	3-0-0	3

MEN14255				
8 EAA-B Extra Academic Activity-B		2	0-0-4	4
MN	Minor Course [@]	4@	3-1-0	4@
Total		26 [@]		31 [@]
er-V				
MEN15103	Design of Machine Elements	4	3-0-2	5
MEN15102	Computer Aided Manufacturing	4	3-0-2	5
MEN15104	Manufacturing Science and Technology - II	4	3-0-2	5
MEN15101	Automobile Engineering	3	3-0-0	3
MEN15251-	Core Elective Course - 2	3	3-0-0	3
MEN15279	Core Elective Course - 3	3	3-0-0	3
MN	Minor Course [@]	4@	3-1-0	4 [@]
HN	Honours Course [#]	4#	4-0-0	4#
RS	Research Course ^{\$}	4\$	4-0-0	4 ^{\$}
	Total	21 ^{@#\$}		24 ^{@#\$}
er-VI	·			
MEN16102	Refrigeration and Air Conditioning	4	3-0-2	5
HSN16603	Soft Skill and Personality Development	3	3-0-0	3
MEN16101	Mechanical System Design	3	3-0-0	3
MEN16103	Robotics and Mechatronics	4	4 3-0-2 5	
MEN16251-	Core Elective Course - 4	3	3-0-0	3
MEN16279	Core Elective Course - 5	3	3-0-0 3	
MEN16104	Colloquium	1	0-0-2 2	
MN	Minor Course [@]	4 [@]	3-1-0	4 [@]
HN	Honours Course [#]	4#	4-0-0	4#
RS	Research Course ^{\$}	4 ^{\$}	4-0-0	4 ^{\$}
	Total	21 ^{@#\$}		24 ^{@#\$}
er-VII				
MEN17101	Renewable Energy	4	3-0-2	5
MEN17251-	Core Elective - 6	3	3-0-0	3
MEN17271				
MEN17401-	Open Elective Course	3	3-0-0	3
MEN17407	Dusiness Economics	2	200	2
HSN1/602 Business Economics 3 3-0-0		3		
MEN17351/ MEN17252	vocational Training /STTP	3	0-0-6	6
MN	Minor Course [@]	1@	3_1_0	1@
HN	Honours Course [#]	+ 	4-0-0	
RS	Research Project [§]	4\$	4-0-0	4\$
	Total	16 ^{@#\$}		20 ^{@#\$}
	MEN14255 EAA-B MN minimized for the second s	MEN14255 EAA-B Extra Academic Activity-B MN Minor Course [®] Total r-V MEN15103 Design of Machine Elements MEN15104 Manufacturing Science and Technology - II MEN15101 Automobile Engineering MEN15251- Core Elective Course - 2 MEN15279 Core Elective Course - 3 MN Minor Course [®] HN Honours Course [#] RS Research Course ⁵ Total Total r-VI MEN16102 MEN16102 Refrigeration and Air Conditioning HSN16603 Soft Skill and Personality Development MEN16101 Mechanical System Design MEN16251- Core Elective Course - 4 MEN16279 Core Elective Course - 5 MEN16104 Colloquium MN Minor Course [®] HN Honours Course [#] RS Research Course ⁵ MEN16104 Colloquium MN Minor Course [#] HN Honours Course [#] RS Research Course ⁵	MEN14255 Extra Academic Activity-B 2 EAA-B Extra Academic Activity-B 2 MN Minor Course® 4% Total 26® r-V MEN15103 Design of Machine Elements 4 MEN15102 Computer Aided Manufacturing 4 MEN15103 Manufacturing Science and Technology - II 4 MEN15104 Manufacturing Science and Technology - II 4 MEN15251- Core Elective Course - 2 3 MIN Minor Course® 4@ HN Honours Course® 4# RS Research Course* 4# RS Research Course* 4 MEN16102 Refrigeration and Air Conditioning 4 HSN16603 Soft Skill and Personality Development 3 MEN16101 Mechanical System Design 3 MEN16102 Refrigeration and Air Conditioning 4 MEN16103 Robotics and Mechatronics 4 MEN16104 Cologuium 1 MN Minor Course® 4 MEN16104 Coloquium 1	MEN14255 Extra Academic Activity-B 2 0-0-4 MN Minor Course [®] $4^{@}$ 3-1-0 Total $26^{@}$ - r-V MEN15103 Design of Machine Elements 4 3-0-2 MEN15104 Manufacturing Science and Technology - II 4 3-0-2 MEN15101 Automobile Engineering 3 3-0-0 MEN15251- Core Elective Course - 2 3 3-0-0 MEN15251- Core Elective Course - 3 3 3-0-0 MN Minor Course [®] $4^{@}$ 3-1-0 HN Honours Course [®] $4^{@}$ 4-0-0 RS Research Course ⁵ $4^{$}$ $4-0.0$ RS Research Course ⁵ $4^{$}$ $4-0.0$ Total $21^{@#8}$ $r-VI$ MEN16102 Refrigeration and Air Conditioning $4^{$}$ $3-0-2$ HSN16603 Soft Skill and Personality Development $3^{$}$ $3^{$}$ -0-0 MEN16101 Mechatronics $4^{$}$ $4^{$}$

Semester-VIII					
1	MEN18351/	Major Project/Internship	14	0-0-28	28
	MEN18352				

	Total	14		28

1*: A student can opt for Vocational training / STTP (short-term training program) of minimum three to four weeks during the summer vacation after IV and/or VI semester and its three credits will be considered in the VII semester after the submission of successful completion certificate from the Industry, report and successful presentation.

@: A student can opt for one or two Minor courses in IV, V, VI and VII semesters as per the Minor courses offered by the other departments. Total credits in these semesters will be based on the credits of the Minor course(s) opted by the student in a particular semester. In this case the degree of the student will be B.Tech. (Mechanical Engineering) with Minor in ()

#: 1. A student can opt for one or more Honours courses in V, VI and VII semesters as per the Honours courses offered by the department. Total credits in these semesters will be based on the credits of the Honours course(s) opted by the student in a particular semester. In this case the degree of the student will be B.Tech. (Mechanical Engineering) with Honours

2. A student, opting for Honours registration, is required to complete a total of 16 credits of the Honours courses offered by the department of Mechanical Engineering. Honours courses will be from any of the M.Tech. programme of Department of Mechanical Engineering.

\$: 1. A student can opt for one or more research courses in V, VI and VII semesters as per the Research courses offered by the department. Total credits in these semesters will be based on the credits of the Research course(s) opted by the student in a particular semester. In this case the degree of the student will be B.Tech. (Mechanical Engineering) with Research. In VII semester the research course will be a research project which may continue in VIII semester as Major Project.

2. A student, opting for Research registration, is required to complete a total of 16 credits of the Research courses offered by the department. Research courses will be from any one of the M.Tech. programme of Department of Mechanical Engineering.

List of Electives and Minors: B. Tech. (Mechanical Engineering)

II Semester: Core E	ngineering Supportive Course (for other branches)
Code	Name

S. No.	Code	Name
1.	MEN12401	Introduction to Engineering and Design
2.	MEN12402	Engineering Innovation and Design
3.	MEN12403	Non-conventional Energy Recourses
4.	MEN12404	Basic Industrial Engineering

IV Semester: Core Elective Courses - 1

S. No.	Code	Name
5.	MEN14251	Design and Analysis of Experiments
4.	MEN14252	Modelling and Simulation in Engineering
2	MEN14253	Noise and Vibration
1.	MEN14254	Optimization Methods in Engineering
3.	MEN14255	Quality Engineering

V and VI Semester: Core Elective Courses – 2, 3, 4 and 5

S. No	Code	Course Name
1.	MEN15251/MEN16251	Additive Manufacturing
2.	MEN15252/MEN16252	Advanced Automobile Engineering
3.	MEN15253/MEN16253	Advanced Machining Processes
4.	MEN15254/MEN16254	Automatic Control
5.	MEN15255/MEN16255	Computational Fluid Dynamics
6.	MEN15256/MEN16256	Concurrent Engineering
7.	MEN15257/MEN16257	Concurrent Engineering
8.	MEN15258/MEN16258	Condition Monitoring and Diagnostics
9.	MEN15259/MEN16259	Cryogenics
10.	MEN15260/MEN16260	Design against Fatigue and Fracture
11.	MEN15261/MEN16261	Design for Ergonomics
12.	MEN15262/MEN16262	Design for Manufacturing and Assembly
13.	MEN15263/MEN16263	Design of Robotic Systems
14.	MEN15264/MEN16264	Design of Transmission Elements
15.	MEN15265/MEN16265	Energy Management
16.	MEN15266/MEN16266	Failure Mode and Effect Analysis
17.	MEN15267/MEN16267	Finite Element Method in Engineering
18.	MEN15268/MEN16268	Forensic Engineering
19.	MEN15269/MEN16269	Industrial Safety and Reliability Engineering
20.	MEN15270/MEN16270	Industrial Tribology
21.	MEN15271/MEN16271	Machine Tool Design
22.	MEN15272/MEN16272	Mechanical Micromachining Technology
23.	MEN15273/MEN16273	Micro and Nano Manufacturing
24.	MEN15274/MEN16274	Non-Conventional Energy Sources
25.	MEN15275/MEN16275	Operations Research
26.	MEN15276/MEN16276	Product Life Cycle Management
27.	MEN15277/MEN16277	Production Planning and Control

28.	MEN15278/MEN16278	Supply Chain Management
29.	MEN15279/MEN16279	Surface Treatment and Characterization

VII Semester: Core Elective Courses – 6

S. No	Code	Course Name
1.	MEN17251	Advanced Automobile Engineering
2.	MEN17252	Alternative Fuel Technology
3.	MEN17253	Automotive Electronics
4.	MEN17254	Automotive Materials
5.	MEN17255	Automotive Safety
6.	MEN17256	Computer Integrated Manufacturing
7.	MEN17257	Design against Fatigue and Fracture
8.	MEN17258	Electric Vehicle Technology
9.	MEN17259	Energy Management
10.	MEN17260	Green Hydrogen and Alternative fuels
11.	MEN17261	Hybrid Electric and Fuel Cell Vehicles
12.	MEN17262	Industrial Automation
13.	MEN17263	Machine Learning
14.	MEN17264	Mechanics of Composite Materials
15.	MEN17265	Microelectromechanical systems (MEMS)
16.	MEN17266	Smart materials
17.	MEN17267	Solar Energy and applications
18.	MEN17268	Sustainable Engineering
19.	MEN17269	Sustainable Materials and Green Buildings
20.	MEN17270	Vehicle Maintenance
21.	MEN17271	Vehicle Management System

VII Semester: Open Elective Course

S. No	Code	Name
4.	MEN17401	Electrical Vehicles Technology
2.	MEN17402	Energy Management
1.	MEN17403	Non-Conventional Energy Sources
3.	MEN17404	Product Design and Development
6.	MEN17405	Quality Engineering
5.	MEN17406	Solar Photovoltaics
7.	MEN17407	Total Quality Management

Semester-I

Course Code:	Engineering Chemistury II	Credits:
CYN11502	Engineering Chemistry-II	2-1-2:4

Prerequisites: NIL **Course Outcome**

S.N.	Outcomes
CO1	Achieve the understanding of different fundamental chemical concepts of the chemical
	kinetics, fuel, lubricant and polymer.
CO2	Ability to interpret experimental data related to rate of reactions, fuel, lubricants and
	electrochemical cells.
CO3	Develop the capability to apply the knowledge for the industrial applications.

Course Articulation Matrix:

Module	Content	Lectures						
1.	Chemical Kinetics: Rate of a chemical reaction, factors affecting the rate of	05						
	reactions:							
	concentration, temperature, pressure and catalyst; elementary and complex							
	reactions, order							
	and molecularity of reactions, rate law, rate constant and its units.							
2.	Electrochemical Systems: Electrochemical cells and EMF, Applications of	04						
	EMF, Case							
	study for electrorefining process.							
3.	Fuels: Classification, calorific values, analysis of solid fuels, liquid fuels and	04						
	its							
	properties, refining, cracking and reforming of petroleum, knocking and							
	octane and cetane							
	rating, anti-knocking agents, biofuels.							
4.	Corrosion: Theories of corrosion, type of corrosion, its prevention and	05						
	control, Case study							
	on corrosion control in industry.							
5.	Lubricants: Definition, functions, mechanisms and classifications of	04						
	lubricants, properties							
	and testing of lubricants.							
6.	Polymers, plastics, rubber and Adhesives: Polymers, composites,	04						
	thermoplastic and							
	thermosetting plastics, rubber, biodegradable polymers, adhesives.							
7.	Band Theory: Semiconductors, insulators, doping in semiconducting	02						
	materials.							

Practical: List of Experiments

- 1. Determination of flash point of oils by Able's apparatus.
- 2. Determination of flash point of lubricating oil by Pensky Martin's 'closed' tester.
- 3. To study the viscosity of the given sample of lubricating oil with a Redwood viscometer and to study the viscosity at various temperatures.
- 4. To find out the aniline point of the given sample of fuel.
- 5. Determination of Steam Emulsification Number (SEN) of a given lubricating oil.
- 6. To carry out the % of moisture content only of a given sample of coal as a part of proximate analysis.
- 7. Determination of viscosity average molecular weight of a polymer sample by Viscometer.

- 8. Kinetic study of hydrolysis of ethyl acetate by volumetric titration method.
- 9. Preparation of biodiesel &it's flash point determination.

Text Books:

- 1. Engineering Chemistry, Jain & Jain, Dhanpat Rai Publishing Co., New Delhi.
- 2. Engineering Chemistry, Shashi Chawla, Dhanpat Rai Publishing Co., New Delhi.

Reference Books:

- 1. Engineering Chemistry- A Textbook, Harish Kumar Chopra, AnupamaParmar, Narora, New Delhi.
- 2. Elements of Physical Chemistry, Peter Atkins, Julio D. Paula, Oxford, UK.
- 3. Polymer Science, V R Gowariker, N V Viswanathan, Jayadev Sreedhar, New Age International Private Limited, New Delhi.
- 4. Inorganic Chemistry: Principles of Structure and Reacivity, By James E. Huheey, Ellen A. Keither, Richard L. Keiter, Okhil K. Medhi Pearson.
- 5. Manufacturing Science, Amitabha Ghosh, Ashok Kumar Mallik, Affiliated East- West Press Pvt. Ltd, New Delhi.
- 6. Advanced Polymer Chemistry A Problem Solving Guide, Manas Chandra, Marcel Dekker Inc, New Work.
- 7. Online resources.

Course Code:	Materials Science and Engineering	Credits:
AMN11101	Materials Science and Engineering	3-0-0:3

Prerequisites: NIL

Course Outcome

S.N.	Outcomes
CO1	Understand role of structure at different level on properties.
CO2	Apply concepts of Materials Science to analyze engineering problems.
CO3	Select materials for different engineering applications.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	1	1	1	-	1	-	2	2	2	3	3
CO2	3	3	2	2	3	1	-	1	2	2	1	2	3	3
CO3	3	3	3	3	3	2	2	2	2	2	1	2	3	3

Module	Content	Lectures
8.	Introduction: Historical perspective of Materials Science; Structure and	05
	properties relationship of Engineering Materials; Classification of materials;	
	Introduction to Ceramics, Composites Materials: Processing and	
	Applications; Advanced Materials.	
9.	Structure of Solids and Characterization of Materials: Introduction to	07
	crystal structures and systems; Metallic structures; Ceramic crystal structures;	
	Crystallographic directions and planes, Miller indices, Density computations,	
	Crystallography, Diffraction methods, Electron microscopy, Metallography,	
	Thermal characterization techniques.	
10.	Imperfections in Crystals: Point defects, Dislocations, Interfacial Defects,	03
	Bulk defects.	
11.	Diffusion: Diffusion mechanisms, steady and non-steady state diffusion,	03
	Factors that influence diffusion, Law's of diffusion, Applications of	
	Diffusion.	
12.	Phase Diagrams and Phase Transformations: Unary, Binary, Equilibrium	05
	phase diagrams, Eutectic, Eutectoid, Peritectic and peritectoid reactions,	
	Transformation rate effects and TTT diagrams. Microstructure and property	
	changes in iron-carbon system, Iron-Carbon (Fe-C or Fe-Fe3C) Diagram	
13.	Mechanical Behaviour of Materials: Elastic and Plastic properties, Fatigue,	10
	Fracture, Creep.	
14.	Thermal, Electrical, Magnetic, Optical Properties: Thermal behaviour of	07
	Materials; Electrical conduction, Semi conductivity, Super conductivity,	
	Dielectric behaviour, Ferroelectricity, Piezoelectricity, Magnetic behaviour of	
	Materials; Optical properties of materials and their applications.	

Text and Reference Books:

- 1. "Materials Science and Engineering: An Introduction" by William D. Callister Jr., David G. Rethwisch.
- 2. "Materials Science and Engineering: A First Course" by Raghavan V.
- 3. "Mechanical Metallurgy" by George E. Dieter
- 4. "Elements of materials science and engineering" by Lawrence H. Van Vlack

Course Code:	Course Code: MEN11101 Engineering Thermodynamics	Credits:
MEN11101		3-0-0:3

Prerequisites: NIL

Course Outcomes:

CO1	To understand the concept of thermodynamic system and its properties, work, power,
	heat and first law of thermodynamics.
CO2	To understand the concept of thermodynamic temperature scale, refrigerator, heat pump
	and feasibility of any process based on second law of thermodynamics.
CO3	To apply combined first and second law to evaluate entropy, Irreversibility and exergy.
CO4	To perform thermodynamic analysis of refrigeration, Gas and vapour power cycle.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	1	1	2	-	-	-	2	2	3
CO2	2	2	3	2	2	1	2	1	-	-	-	3	3	2
CO3	2	3	2	3	2	2	2	2	-	-	1	3	2	3
CO4	3	3	1	3	2	1	1	1	1	-	-	2	2	3

Unit	Details	No. Hrs
1	Introduction to thermodynamics: System, surroundings, boundaries, classification of systems. Unit and dimensions, conversion factors. Properties of systems, equilibrium, processes, heat and work interaction. The work interaction. Thermodynamic definition of work, characteristics of the work interaction. Evaluation of work. Adiabatic systems and processes.	6
2	Zeroth law: Diathermic boundary, Zeroth law, Isothermal states. Empirical temperature. Principles of thermometry. Scales of temperature. Gas thermometer. The ideal gas. Ideal gas temperature scale.	4
3	The first law: Basic form energy of a system, The heat interaction, Sign convention. First law for open systems, Steady-flow energy equation and its applications. Properties of gases. Properties of steam. Introduction to steam tables. Other equations of state.	8
4	The second law : Kelvin-Planck and Clausius statements. Equivalence of statements. Carnot theorem. Thermodynamic temperature. Kelvin scale. Carnot engine, refrigerator and heat pump. Definition of entropy. Combined first and second law, Evaluation of entropy. Principle of increase of entropy.	7
5	Availability: available energy, quality of energy, useful work, availability or exergy balance for open and closed systems, 2^{nd} law efficiency.	5
6	Introduction to cycles : Classifications of cycles. Gas power cycles- Otto, Diesel, Brayton. Vapour power cycle- Rankine cycle, vapour- compression refrigeration cycle.	6

Text Books:

P.K. Nag Cengel & Boles, McGraw Hill McGraw Hill

Engineering Thermodynamics
 Thermodynamics: An engineering

References:

1	Fundamentals of Engineering	Moran M. J. & Shapiro H. N	Wiley
	Thermodynamics		
2	Fundamentals of Thermodynamics	Sonntag R.E., Borgnakke C. &	Wiley
		Van Wylen C. J.	
3	Engineering Thermodynamics	Rogers G.F.C. & Mayhew Y.R	Longman

Course Code: MEN11602

Workshop and Manufacturing Processes

Credits: 1-0-2:4

Prerequisites: NIL

Course Outcomes:

CO1	Students will be able to understand the importance of manufacturing which comprises
	materials, processes and systems.
CO2	Students will be able to understand the metal casting, metal working process and able to
	perform casting of metals, forging and sheet metal operations through practical classes.
CO3	Students will be able to understand the machining operations, permanent joining
	processes. They will be able to perform machining operations on Lathe machine and
	joining through arc and gas welding processes.
CO4	Students will be able to learn and perform operations related to carpentry, fitting, plastic
	molding, and Computer Numerical Control (CNC) machines.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	2	1	1	-	1	1	1	1
CO2	2	1	1	-	-	1	1	-	1	1	1	1
CO3	2	1	1	-	-	1	1	-	1	1	1	1
CO4	2	1	1	-	3	1	1	-	1	1	1	1
CO5	2	1	1	-	2	1	1	-	1	1	1	1

Correlation between ME11102 Workshop subject and the PSOs

Name of the B. Tech. Program	PSO1	PSO2	PSO3	PSO4
B. Tech. (Civil Engineering)	2	1	1	-
B. Tech (Mechanical Engineering)	3	3		
B. Tech (Production & Industrial Engineering)	3	3		
B. Tech (Electrical Engineering)	1	1	-	

Unit	Details	No. Hrs
1	Concept of Manufacturing- Manufacturing definition; Role of materials, processes and systems in manufacturing; Classification and brief introduction of engineering materials such as metals & alloys, Classification and brief introduction of manufacturing processes	4
2	Sand Casting Process of Metals- Elements of Green Sand Mould; Pattern design and making, Method of Preparation of Green Sand Mould; Casting Defects	2
3	Metalworking Processes- Classification of Metalworking Processes-brief introduction of bulk and sheet metal processes, Hot Vs Cold Working; Hot and Cold Rolling; Types of Rolling Mills, Forging, Extrusion, Drawing	3
4	Machining Processes: Classification of machining processes & machine tools; Construction, Specification, and operations on Lathe Machine and Drilling machine	2
5	Fabrication Processes- Classification of Welding Operations, Types of Joints & Welding Positions; Brief description of Arc, Resistance and Gas welding techniques. Brazing and Soldering	3

List of Practical

1. Safety in Workshop (Demonstration)

Safety precautions and utilization of hand tools and machines of different shops with safe working habits. Introduction to measuring equipments and gauges of different shops.

2. Carpentry

Study of wood works, types of hand tools and machine. Making of one job involving wood work joint

3. Fitting

Study of different fits and hand tools. Making of one job involving fitting to size, male-female fitting with drilling and tapping

4. Welding

Study of electric arc welding and gas welding, tools, types of weld joints and safety precaution during welding. Making of one joint using electric and gas welding. Students will be introduced to brazing and soldering (demonstration)

5. Sheet Metal Work

Study of different hand tools, machine and sheet metal joints. Making of one utility job in sheet metal

6. Foundry

Principles of molding, methods, core & core boxes, preparation of sand mould of given pattern and casting (demonstration)

7. Black Smithy

Introduction to hot working and Study of forging hand tools, furnace and machine. Making a job on hot upset forging.

8. Machining

Study of lathe machine, cutting tools and turning related operations. Making of one job on lathe machine including facing, step and taper turning, threading operations.

9. Plastic Processing

Introduction to plastics and different plastic molding techniques. Study of injection molding process with demonstration.

10. Computer Numerical Control (CNC)

Introduction to automation & CNC, Assembly of models of CNC, CNC wood router, engraving and exposure to part programming. Preparation of part program for simple profiles. Making a job on CNC (Demonstration).

11. Mini Project

Team activity – Fabrication of prototype model based on above practical.

Text Books:

1 Principles of Modern Manufacturing: Materials, Processes Mikell P. Groover John Wiley and Systems

References:

1	Elements of Workshop Technology	S. K. Hajra Choudhury, A. K.	Media
	(Volume 1: Manufacturing Processes,	Hajra Choudhury and N. Roy	Promoters &
	Volume 2: Machine Tools)		Publishers Pvt
			Ltd., 2010
2	Manufacturing Engineering and	Serope Kalpakjian and Steven R.	Pearson, 2013
	Technology	Schmid	
3	Machinery's Handbook	Erik Oberg, Franklin D. Jones,	Industrial Press,
		Holbrook L. Horton, Henry H.	Inc., 2020
		Ryffel, and Christopher J.	
		McCauley Laura Brengelman	
4	Mechatronics	HMT	McGraw Hill
			Education, 2017
5	Manufacturing Processes I,		NPTEL course
	https://nptel.ac.in/courses/112107144		
6	Fundamentals of manufacturing processe	28	Swayam Course
	https://onlinecourses.nptel.ac.in/noc22_n	ne71/preview	-

Course Code: MEN12601	Engineering Graphics	Credits: 1-0-2:4

Prerequisites: NIL

Course Outcomes:

CO1	Understand the importance and principles of engineering drawing by hand practice and
	using computer aided drafting software.
CO2	Understand the isometric and orthographic projections of different objects.
CO3	Create assembly drawing of simple machine components

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	3	-	-	2	1	2	-	2	2	3
CO2	2	2	2	1	3	-	-	2	1	2	-	1	2	2
CO3	3	3	3	2	3	-	-	2	1	2	-	1	3	3

Unit	Details	No. Hrs
1	Introduction to engineering drawing and its importance in real life design and manufacturing. Standards in drawing practice viz. types of lines, lettering, dimensioning, scales etc.	2L+2P
2	Introduction to isometric and orthographic projection. Orthographic projection of points, projection of lines, projection of planes, orthographic views of solids sketching of the same for conceptualization.	4L+8P
3	Introduction to computer aided drafting software and hands on practice of orthographic views of solid objects.	2L+6P
4	Sectional views of solid objects and hands on practice of sectional views of solid objects using computer aided drafting software.	2L+4P
5	Introduction to temporary fasteners (e.g. screwed fasteners, keys, cotters etc.) Details of screwed fasteners (e.g. bolt, nut, stud, screw etc), terminology of threads, types (e.g. V, square, acme, single/multi start, left/right handed etc). Assembly drawing of nut-bolt using computer aided drafting software.	1L+2P

Text Books:

1	Engineering Drawing		Jolhe D. A.	Tata McGraw Hill Education			
Refere	ences:						
1	Engineering Drawing		Basant Agrawal, C. M. Agrawal	Tata McGraw Hill Education.			
2	Machine Drawing		K L Narayana, P. Kannaiah, K. Venketa Reddy	New Age International publishers			
3	Machine Drawing in AutoCAD	cludes	Ajeet Singh	Tata McGraw Hill Publishing Company Ltd.			
4	Elementary Drawing	Engineering	Bhatt ND	Charotar Publishing.			
			++++				

<u>##</u>

Semester-II

Course Code: PHN11102

Engineering Physics-II

Credits: 2-1-2:4

Prerequisites: Engineering Physics- II

Physical Optics:

Interference:	Condition of observing interference. Fresnel's Biprism. Stoke's treatment												
	interference in thin films Newton's rings.												
Diffraction:	Fraunhofer's diffraction Single slit, Double slit and N-slit or plane transmission												
	grating Rayleight's criterion of resolution, Resolving power of grating and												
	telescope.												
Polarisation:	Polarisation by reflection Double refraction. Half wave and quarter wave plates.												
	Production and analysis of plane, elliptical and circularly polarised light, Optical												
	activity. Specific rotation. Laurent half-shade polarimeter.												
Laser:	Characteristics of Laser Light Stimulated and spontaneous emission, Population												
	Inversion, Einstein's coefficients, Laser emission ND-YAG and He-Ne lasers,												
	Applications of laser in engineering.												
Special	Frame of reference Inertial and non-inertial frames. Postulates of special theory of												
Theory of	relativity, Lorentz transformation of space and time, Length contraction, Time												
Relativity:	dilation, Addition of velocities. Energy Mass equivalence.												

Practical: List of Experiments

- 1. To measure height of a building using Sextant.
- 2. Interference of light: Newton's ring.
- 3. Interference of light: Fresnel's Biprism.
- 4. Diffraction by a plane transmission grating.
- 5. Specific rotation of sugar using Polarimeter.
- 6. Resolving power of a telescope.
- 7. Surface tension measurement
- 8. Variation of magnetic field along the axis of a current carrying coil.
- 9. Magnetic field distribution due to Helmholtz coil setup.

Reference Books:

- 1. R. Resnik, Introduction to Special Relativity, John Wiley & Sons, Inc.
- 2. A. Ghatak, Optics, Tata McGraw-Hill.
- 3. E. Hecht Optics, Addison Wesley.
- 4. A. Beiser, Concepts of Modern Physics, Tat Mc Graw Hill.
- 5. B. Laud Laser and Non –Linear Optics, Wiley.

Course Code:	Computer Based Numerical and Statistical	Credits:
MAN12107	Techniques	2-0-2:3

Prerequisites: Nil

Course Outcomes:

CO1	Students will be able to understand the concept of errors and will be able to find the roots
	of some algebraic and transcendental equations.
CO2	Students will be able to formulate the interpolating polynomial with the help of several
	interpolation formulas by analyzing and using the data points.
CO3	Students will be able to predict the value of the derivative at an intermediate point for a
	given set of data points. Also, they will be able to solve definite integrals using some
	numerical techniques and apply the knowledge in research and development activity for
	the betterment of society.
CO4	Students will be able to solve a system of linear equations arising in several engineering
	problems and find the eigen value and eigenvector of matrices.
CO5	Students will have basic knowledge of statistical techniques and will be able to derive the
	probability density function of random variables and calculate the expected value of a
	random variable. They will also be able to find several linear and nonlinear regression
	curves/planes for a set of data points.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	-	-	-	-	1	-	2	3	3
CO2	3	3	2	2	1	-	-	-	-	1	-	2	3	3
CO3	3	3	2	2	2	-	-	-	-	1	-	2	3	3
CO4	3	3	2	2	1	-	-	-	-	1	-	2	3	3
CO5	3	3	2	2	2	-	-	-	-	1	-	2	3	3

Unit	Details	No. Hrs
1	Errors in Numerical Computation, Algebraic and Transcendental Equations	6
	Errors in Numerical Computation and Their Analysis, Bisection Method, Method of	
	False Position, Iteration Method, Newton-Raphson Method, Rate of Convergence,	
	Method for complex root: Muller's Method, Quotient Difference Method	
2	Interpolation	7
	Introduction, Errors in Polynomial Interpolation, Interpolation by Evenly Spaced	
	Points: Finite Differences, Missing Terms Technique, Newton's Forward &	
	Backward Interpolation Formula, Gauss, Sterling, Bessel's, Everett's Formula,	
	Interpolation by Unevenly Spaced Points: Lagrange Interpolation Formula, Divided	
	Difference, Newton's General Interpolation Formula.	
3	Numerical Differentiation and Integration	4
	Numerical Differentiation, Numerical Integration, Trapezoidal Rule, Simpson's	
	1/3Rule, Simpson's 3/8 Rule, Boole's & Weddle's Rules.	
4	Numerical Linear Algebra	5
	Numerical Techniques for Finding Solution of a System of Linear Equations: LU &	
	LL* Decomposition Method, Gauss-Jacobi and Gauss-Seidel Iteration Methods,	
	Power Method for Estimating Eigenvalues.	
5	Statistical Computations	4

Random Variables, Discrete and Continuous Random Variables and Their Probability Distribution, Poisson, Bernoulli and Normal Distribution, Frequency Chart, Regression Analysis, Least Square Fit, Linear and Non-linear Regression, Multiple Linear Regression

Text	Books:				
1	Introductory Methods for Numerical Analysis	S. S. Sastry	Prentice Hall (Fifth Edition-2012)		
2	Numerical Methods for Scientific and Engineering Computations	M. K. Jain, S. R. K. Iyenger & R.K. Jain	Wiley Eastern Ltd. (Sixth Edition-2016)		
3	Fundamental of mathematical Statistics	S. C. Gupta and V. K. Kapoor	S Chand Publication (Twelfth Edition - 2020)		
Refe	rence Books:				
1	Applied Numerical Analysis	C. F. Gerald and P. O. Wheatley	Pearson Education		
2	Numerical Methods for Science and Engineering	S. Rajashekharan	S. Chand Publication		
3	Numerical Methods for Engineers	S. C. Chapra and R. P. Canale	McGraW-Hill Education		
4	Statistical Techniques	W. George and G. William	IBH Publications		

Computer Based Numerical Methods & Statistical Techniques (Lab)

Experiment 1: Make a program to find the derivative of a given polynomial f(x) for a given value of x.

Experiment 2: Make a program to find the roots of a given polynomial f(x) using the following methods.

- (a) Bisection Method
- (b) Method of False Position
- (c) Iteration Method
- (d) Newton-Raphson Method
- (a) Muller's Method
- (b) Quotient-Difference Method

Experiment 3: Make a program to create the following difference tables for a given set of data points:

- (a) Forward Difference Table
- (b) Backward Difference Table
- (c) Central Difference Table
- (d) Divided Difference Table

Experiment 4: Make a program to find the interpolation polynomial/interpolation value of f(x) at a specified value for evenly spaced data points using the following methods:

- (a) Newton's Forward and Backward Difference Formulae.
- (b) Gauss's, Stirling's, Bessel's, and Everett's interpolation Formulae.

Experiment 5: Make a program to find the interpolation polynomial/interpolation value of f(x) at a specified value for unevenly spaced data points using the following methods:

- (a) Lagrange's Interpolation Formula.
- (b) Newton's Divided Difference Formula.

Experiment 6: Make a program to find the nth (n=1,2 and 3) derivative of f(x) at a specified value of x for a given set of data points.

Experiment 7: Make a program to find the numerical integration of f(x) at a specified value of x for a given set of data points using the following rules.

- (a) Trapezoidal Rule
- (b) Simpson's 1/3 Rule
- (c) Simpson's 3/8 Rule
- (d) Boole's and Weddle's Rule.

Experiment 8: Make a program to find regression curves for a given set of data points using the following rules:

- (a) Linear and Nonlinear Regression
- (b) Multiple Linear Regression

Course Code:	Engineering Mechanics	Credits:
AMN-12400	Engineering Mechanics	2-0-2:4

Prerequisites: Engineering Mechanics

Course Outcomes:

CO1	Draw free body diagrams for engineering problems and develop understanding about
	equilibrium of forces
CO2	Calculate the resultant of a distributed force system and different geometric properties for
	structural members
CO3	Compute internal forces in beams under various loading
CO4	Apply laws of friction to analyze the effect of friction on various bodies in contact
CO5	Analyse kinematics and kinetic behaviour of rigid bodies in motion

Course Articulation Matrix:

B.Tech	B.Tech Mechanical Engineering														
Course Code: AMN- 12400	PO1	PO 2	P 0 3	P 0 4	PO 5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	1	-	2	-	1	3	3	-
CO2	3	2	-	-	-	-	-	1	-	2	-	1	3	3	-
CO3	3	3	1	1	-	-	-	-	-	2	-	2	3	3	-
CO4	3	3	2	1	-	-	-	-	-	-	2	2	3	3	-
CO5	3	3	2	2	1	-	-	-	-	-	2	2	3	3	-

Details	No. Hrs
Introduction: Idealizations in Mechanics, Forces, Moments, Free body diagram and	6
Force systems, Equilibrium of forces and moments, Varignon's Theorem, Parallel	
shifting and Transmissibility of forces.	
Geometric Properties: Center of Gravity, Center of Mass, and Centroid, Moments of	6
inertia -Area and Mass Moment of Inertia, Product of inertia, Principal axes and	
Principal moments of inertia.	
Beams:Introduction, Shear force and Bending Moment Diagrams.	3
Friction: Introduction, Laws of Coulomb friction, Angle of friction, Angle of	6
Repose, Sliding Friction, Rolling Resistance, Rope and Belt Friction, Screw	
Friction, Wedge Friction.	
Virtual Work, Kinematics& Kinetics:Principle of Virtual work, Potential Energy	7
and Equilibrium, Stability, Kinematics and Kinetics of Rigid Bodies- Types of	
motions in plane, Rotation of rigid bodies, D'Alemberts Principle, Force, Mass and	
	Details Introduction: Idealizations in Mechanics, Forces, Moments, Free body diagram and Force systems, Equilibrium of forces and moments, Varignon's Theorem, Parallel shifting and Transmissibility of forces. Geometric Properties:Center of Gravity, Center of Mass, and Centroid, Moments of inertia -Area and Mass Moment of Inertia, Product of inertia, Principal axes and Principal moments of inertia. Beams:Introduction, Shear force and Bending Moment Diagrams. Friction: Introduction, Laws of Coulomb friction, Angle of friction, Angle of Repose, Sliding Friction, Rolling Resistance, Rope and Belt Friction, Screw Friction, Wedge Friction. Virtual Work, Kinematics& Kinetics:Principle of Virtual work, Potential Energy and Equilibrium, Stability, Kinematics and Kinetics of Rigid Bodies- Types of motions in plane, Rotation of rigid bodies, D'Alemberts Principle, Force, Mass and

Acceleration, Work and Energy, Impulse and Momentum.

Text Books:

- 1. Beer F.P. and Johnston E.R., Mechanics for Engineers-Volume I -Statics, Volume-II Dynamics, McGraw Hill, New York.
- 2. Merriam J.L and Kraige L.G., Engineering Mechanics, Volume 1-Statics, Volume-II Dynamics, John Wiley & Sons, New York.
- 3. Shames L.H., Engineering Mechanics, Prentice Hall, New Delhi.
- 4. R. C. Hibbler, Engineering Mechanics, Vol I and II, Pearson Press, 2002.

List of experiments:

- 1. Friction between inclined plane and sliding box
- 2. Friction between inclined plane and roller
- 3. Mass moment of inertia of flywheel
- 4. Equilibrium of parallel forces
- 5. Belt and pulley friction
- **6.** Screw jack
- 7. Polygon law of forces

Core Engineering Supportive Course (for other branches)

MEN12404 Basic Industrial Engineering	2-0-0:2
---------------------------------------	---------

Prerequisites: NIL

Course Outcome

S.N.	Outcomes										
CO1	Students will be able to identify and use the elements of cost, methods of depreciation and										
	investment techniques. Productivity, Productivity Measurements and develop										
	entrepreneurial attitude.										
CO2	Students will be able to describe the job evaluation and merit rating.										
CO3	Students will be able to implement work study techniques for better productivity and learn										
	to do work measurement and calculate the standard time for doing a job.										
CO4	Students will be able to describe and use different material handling devices,										

Course Articulation Matrix:

	Program Outcomes													
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	-	-	-	3	2	2	2	2	3		
CO2	2	2	2	-	-	1	2	2	2	2	3	2		
CO3	3	2	2	1	-	1	2	2	2	1	2	3		
CO4	3	2	2	2	2	-	3	2	2	2	2	2		

Unit	t Details										
		Hrs									
1	Introduction, Engineering Economy and Costing-Plant Location and Layouts, Production Systems, Cost Analysis, Break-even Analysis, Methods of Depreciation,	8									
2	Concepts of Production and Productivity, Productivity Measurements.										
3	Job evaluation, Benefits of Job evaluation, Methods of Job evaluation, Merit Rating, Methods of Merit Rating, Requirements for success of Merit Rating System,										
4	Work Measurement, Time Study, PMTS, Work Sampling, Method Study, Micro Motion Study, Principles of Motion Economy.	8									
5	Material Handling System- principles, types, and devices.	6									

Text/Reference Books

1	Introduction to Industrial a Engineering	and System	Turner, W.C, et. al	Prentice Hall, 1993
2	Operations and industrial Designing and managing for pro-	management, ductivity	Del Mar, Donald	McGraw-Hill,2007
3	Motion and Time Study: Measurement of Work	Design and	Ralph M. Barnes	Wiley Publishers
4	Human Factors Engineering		Chandler Allen Phillips	John Wiley and Sons New York

Course Code: MEN12403

Non-conventional Energy Resources

Credits: 3-0-0:3

Pre-requisites: NIL Course Outcomes:

CO1	Understand the concept of energy crisis, non-conventional energy resources, availability									
	and their importance.									
CO2	Understand various methods to harness non-conventional energy resources.									
CO3	Apply the methods for better harness, conversion techniques, and utilization of non-									
	conventional energy resources.									
CO4	Analyse various problems, limitations, complexities and performances of power plants									
	based on non-conventional energy resources.									

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	2	2	2	3	3	2
CO2	3	3	2	2	2	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Unit	Details	No. Hrs
1	Introduction: The energy crisis - causes and options, various conventional	4
	and non-conventional forms of energy and their characteristics, availability	
	of non-conventional energy and land area requirements.	
2	Solar energy: Introduction, Solar radiation, Sun-Earth angles, Measurement	6
	of solar radiation at the earth's surface, Types of collectors such as flat-plate	
	and concentrating collectors, solar thermal power generation, solar ponds	
	and energy storage. Principle of Solar photovoltaic, materials, mono-	
	crystalline, polycrystalline and amorphous silicon cells and their production	
	technology, I-V characteristics, parameters of performance, modules, array	
	and PV plant configurations and power generation.	
3	Biomass energy: Introduction, Incineration, Thermo-chemical and	5
	biochemical conversion to solid, liquid and gaseous fuels; Production	
	technologies for bio-ethanol, biogas and producer gas, Urban waste to	
	energy processes.	
4	Ocean, Wave and Tidal energy: Introduction, Ocean thermal energy	5
	conversion (OTEC) - closed and open cycles and their limitations, Wave	
	energy and its conversion processes, Tidal energy - nature of the tides and	
	tidal barrages for power generation.	
5	Wind energy: Fundamentals, power in the wind, site selection, maximum	5
	power coefficient, wind turbine and its types – horizontal axis and vertical	
	axis machines, performance of wind machines, wind energy farms.	
6	Geothermal energy: Introduction, Geothermal energy resources, Hot aquifers	4
	and hot dry rock systems, geothermal electric power plants.	
7	Other Technologies: Magnetohydrodynamics (MHD) Energy conversion,	4
	Fuel Cells, Nuclear Energy, Hydrogen, Methanol, Energy Storage.	

Delhi

Delhi, India

PHI Learning Pvt. Ltd., New

Narosa Publishing House, New

K.C.

Text Books:

- 1 Renewable Energy Sources and D.P. Emerging Technologies Singa
- 2 Solar Energy-Fundamentals, Design, Modeling & Applications'

References:

1 Advanced Renewable Energy G.N. Tiwari and R.K. RSC Publishing, Cambridge, Sources Mishra U.K Biogas Systems: Principles and 2 K.M Mittal New Age International Applications Limited Publishers. Wind Energy Come of Age 3 John Wiley and sons, New Gipe P York. 4 Solar Energy Fundamentals S. Kalogirou Academic Press Solar Photovoltaics: C.S. Solanki PHI Learning Pvt. Ltd., New 5 FundamentalsTechnologies and Delhi Applications Energy Technology (Non S. Rao, BB Parulekar Khanna Publishers 6 Conventional, Renewable And Conventional)

Kothari,

Singal and R. Ranjan

G.N. Tiwari

Course	Code:
MEN1	2401

Introduction to Engineering and Design Credits: 2-1-0:3

Prerequisites: NIL Course Outcomes:

	outcomes.
CO1	Students will be able to develop an understanding of the engineering & Technology in
	general.
CO2	Students will be able to develop an understanding on how design differs in same category
	of products.
CO3	Students will be able to identify the needs that is to fulfilled by a product
CO4	Students will be able to understand how different approach leads to difference in cost and
	complexity.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	2	3	3	2	3	2	-	3	2	2
CO2	3	2	2	-	2	3	3	2	3	2	-	3	2	2
CO3	3	2	2	-	2	3	3	2	3	2	-	3	2	2
CO4	3	2	2	-	2	3	3	2	3	2	-	3	2	2

Unit	Details	No. Hrs
1	Introduction to General Engineering	7
	What is Engineering? Difference between Science, Engineering & Technology. History	
	of Engineering. Engineering functions, Characteristics of engineers. Traits of engineers.	
	Engineering Design; Engineering challenges; Ethics; Communication skills; Team work;	
	Attitude. Creative thinking- Invention- innovation & inventiveness in a society.	
2	Introduction of Engineering Design - needs assessment, problem formulation, concept	7
	selection modelling, abstraction, synthesis, economic analysis, materials selection and	
	manufacturing processes. Case histories for illustrating the success and failure in	
	engineering design.	
3	Concepts of Manufacturing, Casting Processes, Plastics Processing, Metal working	7
	Processes, Machining Processes, Fabrication Processes, a glimpse of modern	
	manufacturing processes through different case studies.	
4	Simple hands on projects, Intellectual Property Rights.	7

Reference Books:

1	Engineering by Design	Gerard Voland	2 nd Edition, Pearson, (2004).
2	Engineering Design	George E Dieter Linda	Design, Indian Edition (2016)
		C Schmidt	
3	Product Design & Development	Karl T. Ulrich, Steven	McGraw Hill Publishers
		D Eppinger	
4	Human Factors in Engineering	Mark S sanders &	McGraw Hill Publishers.
	Design	Ernst J	
5	Introduction to Engineering	Robert J. Pond, Jeffrey	7th Edition, Prentice Hall, 2009
	Technology	L. Rankinen	
6	Engineering Fundamentals: An	Saeed Moaveni	4th Edition, Cengage Learning
	Introduction to Engineering		India Pvt. Ltd, (2011)

Course Code:	Engineering Innovation and Design	Credits:
MEN12402	Engineering Innovation and Design	2-0-2:4

Prerequisites: NIL Course Outcomes:

CO1	Students will be able to visualize the need for engineering for serving the society better
CO2	Students will be able to feel themselves more knowledgeable- at the end of the course.
CO3	Students will be able to identify needs and be able to suggest different alternative solutions
	considering cost constraints.
CO4	Students will be able to have a watchful eye on happenings in their surrounding for creative analyses. Possibility of taking up entrepreneurship activity, possibility of coming up with
	new ideas leading to IPR.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO2	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO3	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO4	3	3	3	2	2	2	2	2	-	-	-	2	2	2

Unit	Details						
1	Introduction Design & innovation, Who designs & develops products,						
	Industrial & Practical examples. Projects.						
2	Creative thinking- Invention- innovation & inventiveness in a society.						
3	A Generic Development Process & Concept Development.						
4	Identifying Customer Needs, Concept Generation, Concept Selection						
5	Product Architecture, Industrial Design, Intellectual Property Rights	6					

References:

- 1. Product Design & Development- Karl T. Ulrich, Steven D Eppinger, McGraw Hill Publishers.
- 2. Gerard Voland, Engineering by Design, Pearson,
- 3. Human Factors in Engineering Design- Mark S sanders & Ernst J. Mc Cornick McGraw Hill Publishers.
- 4. https://ocw.mit.edu/courses/esd-051j-engineering-innovation-and-design-fall-2012/video_galleries/lecture-notes-and-videos/

Course Code: MEN11602

Workshop and Manufacturing Processes

Credits: 1-0-2:2

Prerequisites: NIL Course Outcomes:

CO1	Students will be able to understand the importance of manufacturing which comprises
	materials, processes and systems.
CO2	Students will be able to understand the metal casting, metal working process and able to
	perform casting of metals, forging and sheet metal operations through practical classes.
CO3	Students will be able to understand the machining operations, permanent joining
	processes. They will be able to perform machining operations on Lathe machine and
	joining through arc and gas welding processes.
CO4	Students will be able to learn and perform operations related to carpentry, fitting, plastic
	molding, and Computer Numerical Control (CNC) machines.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	-	2	1	1	-	1	1	1	1
CO2	2	1	1	-	-	1	1	-	1	1	1	1
CO3	2	1	1	-	-	1	1	-	1	1	1	1
CO4	2	1	1	-	3	1	1	-	1	1	1	1
CO5	2	1	1	-	2	1	1	-	1	1	1	1

Correlation between ME11102 Workshop subject and the PSOs

Name of the B. Tech. Program	PSO1	PSO2	PSO3	PSO4
B. Tech. (Civil Engineering)	2	1	1	-
B. Tech (Mechanical Engineering)	3	3		
B. Tech (Production & Industrial Engineering)	3	3		

Unit	Details	No. Hrs
1	Concept of Manufacturing- Manufacturing definition; Role of materials,	4
	processes and systems in manufacturing; Classification and brief introduction	
	of engineering materials such as metals & alloys, Classification and brief	
	introduction of manufacturing processes	
2	Sand Casting Process of Metals- Elements of Green Sand Mould; Pattern	2
	design and making, Method of Preparation of Green Sand Mould; Casting	
	Defects	
3	Metalworking Processes- Classification of Metalworking Processes-brief	3
	introduction of bulk and sheet metal processes, Hot Vs Cold Working; Hot and	
	Cold Rolling; Types of Rolling Mills, Forging, Extrusion, Drawing	
4	Machining Processes: Classification of machining processes & machine	2
	tools; Construction, Specification, and operations on Lathe Machine and	
	Drilling machine	
5	Fabrication Processes- Classification of Welding Operations, Types of Joints	3
	& Welding Positions; Brief description of Arc, Resistance and Gas welding	
	techniques. Brazing and Soldering	

List of Practical

1. Safety in Workshop (Demonstration)

Safety precautions and utilization of hand tools and machines of different shops with safe working habits. Introduction to measuring equipments and gauges of different shops.

2. Carpentry

Study of wood works, types of hand tools and machine. Making of one job involving wood work joint

3. Fitting

Study of different fits and hand tools. Making of one job involving fitting to size, male-female fitting with drilling and tapping

4. Welding

Study of electric arc welding and gas welding, tools, types of weld joints and safety precaution during welding. Making of one joint using electric and gas welding. Students will be introduced to brazing and soldering (demonstration)

5. Sheet Metal Work

Study of different hand tools, machine and sheet metal joints. Making of one utility job in sheet metal

6. Foundry

Principles of molding, methods, core & core boxes, preparation of sand mould of given pattern and casting (demonstration)

7. Black Smithy

Introduction to hot working and Study of forging hand tools, furnace and machine. Making a job on hot upset forging.

8. Machining

Study of lathe machine, cutting tools and turning related operations. Making of one job on lathe machine including facing, step and taper turning, threading operations.

9. Plastic Processing

Introduction to plastics and different plastic molding techniques. Study of injection molding process with demonstration.

10. Computer Numerical Control (CNC)

Introduction to automation & CNC, Assembly of models of CNC, CNC wood router, engraving and exposure to part programming. Preparation of part program for simple profiles. Making a job on CNC (Demonstration).

11. Mini Project

Team activity - Fabrication of prototype model based on above practical.

Text Books:

1 Fundamental of Modern Manufacturing: Materials, Mikell P. Groover John Wiley Processes and Systems

References:

1Elements of Workshop Technology
(Volume 1: Manufacturing Processes,
Volume 2: Machine Tools)S. K. Hajra
K. Hajra Cl
Roy

S. K. Hajra Choudhury, A. Media Promoters & K. Hajra Choudhury and N. Publishers Pvt Ltd., 2010 Roy

Swayam Course

2	Manufacturing Engineering an Technology	nd	Serope Kalpakjian and Steven R. Schmid	Pearson, 2013
3	Machinery's Handbook		Erik Oberg, Franklin D. Jones, Holbrook L. Horton, Henry H. Ryffel, and	Industrial Press, Inc., 2020
			Christopher J. McCauley	
4	Mechatronics		HMT	McGraw Hill Education,
5	Manufacturing Processes I,			NPTEL course

https://nptel.ac.in/courses/112107144
Fundamentals of manufacturing processes https://onlinecourses.nptel.ac.in/noc22_me71/preview

Course Code: MEN12601	Engineering Graphics	Credits: 1-0-2:3

Prerequisites: NIL **Course Outcomes:**

CO1	Understand the importance and principles of engineering drawing by hand practice and
	using computer aided drafting software.
CO2	Understand the isometric and orthographic projections of different objects.
CO3	Create assembly drawing of simple machine components

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	1	-	3	-	-	2	1	2	-	2	2	3
CO2	2	2	2	1	3	-	-	2	1	2	-	1	2	2
CO3	3	3	3	2	3	-	-	2	1	2	-	1	3	3

Unit	Details	No. Hrs
1	Introduction to engineering drawing and its importance in real life design and manufacturing. Standards in drawing practice viz. types of lines, lettering, dimensioning, scales etc.	2L+2P
2	Introduction to isometric and orthographic projection. Orthographic projection of points, projection of lines, projection of planes, orthographic views of solids sketching of the same for conceptualization.	4L+8P
3	Introduction to computer aided drafting software and hands on practice of orthographic views of solid objects.	2L+6P
4	Sectional views of solid objects and hands on practice of sectional views of solid objects using computer aided drafting software.	2L+4P
5	Introduction to temporary fasteners (e.g. screwed fasteners, keys, cotters etc.) Details of screwed fasteners (e.g. bolt, nut, stud, screw etc), terminology of threads, types (e.g. V, square, acme, single/multi start, left/right handed etc). Assembly drawing of nut-bolt using computer aided drafting software.	1L+2P

Text Books:

1	Eng	gineering Drawing	Jolhe D. A.	Tata McGraw Hill Education			
Re	fere	nces:					
	1	Engineering Drawing	Basant Agrawal, C. M.	Tata McGraw Hill			
			Agrawal	Education.			
	2	Machine Drawing	K L Narayana, P. Kannaiah,	New Age International			
			K. Venketa Reddy	publishers			
	3	Machine Drawing includes	Ajeet Singh	Tata McGraw Hill			
		AutoCAD		Publishing Company Ltd.			
	4	Elementary Engineering	Bhatt ND	Charotar Publishing.			
		Drawing		-			
		C	##				

Semester III

Course	Code
A MINI	3101

Mechanics of Materials

Credits: 3-0-2:4

Prerequisite: NIL

Course Outcomes

S.N.	Outcomes	BT	BT
		Level	Description
CO1	Understand the concept of internal forces and moments, stress, strain,	2	Understand
	deformations in members subjected to axial, bending and torsional		
	loads		
CO2	Understand the concepts of stress and strain at a point, and principal	2	Understand
	stress and strain to solve the problems of engineering elasticity		
CO3	Apply the concepts to calculate stress, strain, and displacements in	3	Apply
	mechanical structures and components containing the fundamental		
	elements such as beams, shaft, shells and springs		
CO4	Analyse the mechanical engineering structures and components for	4	Analyse
	safer mechanical design by considering appropriate failure criteria		
	and the design requirements.		

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	-	2	1	2	2	1	1	3	3
CO2	3	3	2	2	1	-	2	1	1	2	1	1	3	3
CO3	3	3	2	2	1	-	1	1	1	1	1	1	3	3
CO4	3	3	3	2	1	1	1	1	1	1	1	2	3	3

Unit	Content	Lectures						
1	Analysis of Stress and Strain: Uniaxial Stress and Strain, Hooke's Law,	6						
	Stress-Strain Curves, Elastic Constants, Strain Energy, Statically Indeterminate							
	Problems, Thermal Effects, Impact Loading.							
2	Biaxial Stress and Strain: Stress at a Point, Stress Transformation, Analysis	8						
	of Strain, Strain-Displacement Relations, Strain Transformation, Strain							
	Measurements, Principal Stresses and Strain							
3	Bending and Shear Stresses: Shear Force and Bending Moment Diagrams,	6						
	Pure Bending, Normal Stress and Shear Stresses in beams, Composite Beams							
4	Torsion of Shaft, Springs, and Pressure Vessels: Torsion of Circular Shaft,							
	Power Transmitted by a Shaft, Compound Shaft, Combined Loadings, Thin-							
	Walled Shells, and Springs (Open and Closed Coils)							
5	Deflections of Beams: Equation of Elastic Curve, Methods for Determining	8						
	Deflections: Double Integration, Macaulay's Method, Moment-Area Method,							
	Castigliano's Theorem							
6	Columns and Theories of Failure: Euler's Theory for Long Columns,	6						
	Rankine-Gordon Formula, Eccentrically Loaded Columns, Theories of failure							

Text Books

- 1. Mechanics of Materials, Gere and Timoshenko, CBS Publications.
- 2. Introduction to Mechanics of Solids, Crandall, Dahl and Lardener, Tata Mcgraw Hill Publications.
- 3. Mechanics of materials, Hibbeler, R.C., 2005, Pearson Education.

Reference Books

- 1. Elements of Strength of Materials, S.P. Timoshenko and D.H. Young, East-West Press Pvt. Ltd. Publications.
- 2. Mechanics of Materials, Pytel and Kiusalaas, Cengage Learning Publications.
- 3. Mechanics of Materials, E. P. Popov, Prentics Hall Publications.
- 4. Strength of Materials, G. H. Ryder, Macmillan India Limited.
- 5. Strength of Materials, Pytel and Singer, Harpercollins College division publications.
- 6. Mechanics of Materials, Riley, Struges and Morris, John Wiley & Sons.

Unit	List of Experiments
1	Specimen preparation by cutting grinding polishing and etching of given materials for
1	comparative micro structural examination
2	
2	To perform the Tensile Test on Universal Testing Machine (UTM) for Mild Steel Specimen
	and draw the stress strain curve. Using stress strain curve find out the following: (a) Yield
	Stress (b) Ultimate Stress (c) Breaking Stress (d) Percentage Elongation (e) Percent
	Reduction in Area (f) Modulus of Elasticity.
3	To predict creep characteristics of given materials by plotting strain vs. time curves for
	different loadings.
4	To study the effect of surface treatment (Etching) on the strength of glass.
5	To perform Torsion Test on Torsion Testing Machine for Mild Steel Specimen and draw
	Torque-Twist curve. Using Torque-Twist curve find the following (a) Modulus of Rigidity
	of the material (b) Yield point value and ultimate point value of the Torque
6	Fabrication and mechanical testing of composite materials made by hand-layup technique in
	the laboratory.
7	To study the fatigue behavior of different materials.
8	To perform the Impact Test on Impact Testing Machines using (a) Charpy Test (b) Izod Test
	and find the Impact Strength of the material.
9	To perform the Beam Bending Test on Beam Bending Apparatus and find the value of
	Modulus of Elasticity by measurement of slope & deflection of the beam and draw Load Vs
	Deflection Curve.
10	To perform the Shear Test on Shear Testing Machine for Wooden Specimen and find the
	Maximum Shear Stress (parallel to grain) of the Wood.

Reference Books

- 1. Pytel A H and Singer F L, "Strength of Materials", 4th Edition, Harper Collins, New Delhi, 1987.
- 2. Beer P F and Johnston (Jr) E R, "Mechanics of Materials" SI Version, Tata McGraw Hill, India, 2001.
- 3. Timoshenko S P and Young D H, "Elements of Strength of Materials", 5th Edition, East West Press, New Dlehi, 1984.

- 4. Bedi D S, "Strength of Materials", 3rd Edition, Khanna Publishing Company 3rd Edition, New Delhi, 2000.
- 5. Jindal U C, "Introduction to Strength of Materials", GalgotiaPublsihing Private Limited 3rd Edition, New Delhi, 2001.
- 6. William D. Callister Jr., David G. Rethwisch "Materials Science and Engineering: An Introduction".
- 7. Raghavan V "Materials Science and Engineering: A First Course".

Course Code: MEN13101

Energy Conversion Technologies

Credits: 3-0-2:4

Prerequisites: Engineering Thermodynamics

Course Outcomes:

CO1	Students will be able to understand the concept of Energy Conversion Technologies and
	systems.
CO2	Students will be able to Identify the components related to steam power plants and
	internal combustion engines along with their working principle
CO3	Students will be able to do the thermal analysis of the Energy Conversion Technologies
	along with the analysis of the effects of different performance parameter
CO4	Students will be able to do critical analysis and of the systems and suggests methods to
	enhance the performance of the Energy Conversion systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				3	3	3
CO2	2	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1	1		1	3	3	3
CO4	3	3	3	2	3	2	1	1	1	1	1	3	3	3

Unit	Details	No. Hrs
1	Review of Carnot and Rankine cycle, Effect of operating conditions on thermal	8
	efficiency of Rankine cycle, Principle methods of increasing thermal efficiency,	
	Deviation of actual cycle from theoretical cycle, Efficiencies, Requirement of	
	ideal working fluid, Binary vapour cycle, Regenerative feed heating cycles,	
	Reheating and regenerative cycles.	
2	Classification of nozzles and diffusers. Steady flow energy equation through	7
	nozzles, momentum equation. Nozzle and diffuser efficiencies. Principles of	
	working of steam turbines, classification comparison, and velocity diagram for	
	impulse and reaction turbines, losses in steam turbines, state point locus and reheat	
	factor.	
3	Function of boilers, Classification of boilers, modern boilers, heat absorption in	5
	water tube boilers, circulation in down comer-riser circuits and their sizing, steam	
	drum and internal, mountings and accessories, Function of condenser, condensing	
	system, surface and jet condensers, mass of circulating water, condenser and	
	vacuum efficiency, Cooling tower: construction details and analysis.	
4	Engine Geometry, Performance Parameters, Air standard Cycle and their	8
	Analysis, Fuel-air Cycle and their Analysis, Actual cycle and their analysis, Inlet	
	and exhaust processes in the four-stroke cycle, Valve timing diagram, Volumetric	
	efficiency, Scavenging in two-stroke cycle engines and supercharging and Turbo	
	charging. SI Engine combustion and CI Engine combustion.	
5	Classification, Ideal Cycles and their analysis, Design Point Performance	6
	Calculations, Comparative Performance of Practical Cycles, Combined Cycle and	
	Cogeneration Schemes, closed cycle gas turbines	1

Text Books:

- 1 Power Plant Engineering
- 2 Internal Combustion Engine Fundamentals

PK Nag Heywood, John B.

McGraw Hill McGraw-Hill

References:

1	Power Plant Technology	M.M. El-Wakil	McGrawHill
\mathbf{r}	Internal Combustion Engines McGray Hill (India)	Canashan V	Internal Edition
L	Internal Compustion Engines, MicOraw-Hill (India).	Galleshall, v.	McGraw-Hill (India).

Exp. No.	Details	No.
		Hrs
1.	Study and performance of complete steam power plant	2
2.	Study and performance of Nestler Boiler (To find the equivalent evaporation, Boiler efficiency and prepare the heat balance)	2
3.	Study and performance of Steam Turbine	2
4.	Study and performance of surface condenser	2
5.	To find the dryness fraction of wet steam using separation throttling calorimeter	2
6.	Study of 60^0 Rovers Gas Turbine and to draw the air fuel, lubrication and power cycles	2
7.	Study of 2-Stroke and 4-stroke C.I. & S.I. Engine with valve timing diagram.	2
8.	Disassembly of single cylinder Diesel Engine & Assembly of single cylinder Diesel Engine.	2
9.	Performance characteristic of multi-cylinder C.I. Engine. (Willan's line method)	2
10.	Performance characteristic of single cylinder diesel engine.	2
11.	Study and performance characteristics of MPFI Engine and Morse test.	2

Text Books:

1	Power Plant Engineering	PK Nag	McGraw Hill
2	Internal Combustion Engine	Heywood, John B.	McGraw-Hill,.
	Fundamentals		
Re	ferences:		
1	Power Plant Technology	M.M. El-Wakil	McGraw Hill
			Internal Edition
2	Internal Combustion Engines,	Ganeshan, V.	McGraw-Hill (India).
	McGraw-Hill (India).		

Course Code: AMN13104

Fluid Mechanics and Hydraulic Machines

Credits: 3-0-2:4

Prerequisite: NIL Course Outcomes:

CO1	To give fundamental knowledge of fluid, its properties, hydrostatic laws and application of mass, momentum and energy equation in fluid flow.
CO2	To develop understanding about Dimensional Analysis, different types of flows and losses in a flow systems
CO3	To learn the importance of flow measurements and its applications in Industries.
CO4	To develop basic knowledge of hydraulic machines and its applications.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	1	-	-	-	-	-	-	2	3	2
CO2	3	2	1	1	2	-	-	-	-	-	-	1	3	2
CO3	-	-	2	-	2	-	-	-	-	-	-	-	3	3
CO4	3	3	2	-	-	-	-	-	-	-	-	2	3	3

Unit	Contents	Lecture						
		Hours						
1	Introduction to Fluid Mechanics- Statics and Kinematics: Physical	08						
	properties of fluids, Rheology of fluids, Hydrostatic pressure on plane and							
	curved surfaces, centre of pressure, Kinematics of Fluid flow: Types of fluid							
	flows, Description of motion, continuity equation, stream function and							
	velocity potential, applications of potential flow.							
2	Dynamics of Fluid Flow and Dimensional Analysis: Euler's Equation of	08						
	motion, Bernoulli's equation and its applications, Pitot tube, Orifice, Venturi,							
	nozzle and bend meter. Reynolds transport theorem, Momentum equation							
	(Navier-Stokes equation). Dimensional Analysis and similarity,							
	Buckingham's Pi theorem, Important dimensionless numbers and their							
	physical significance.							
3	Laminar and Turbulent Flows: Equation of motion for laminar flow	07						
	through pipes, Stokes law, isotropic and homogenous turbulence, scale and	l						
	intensity of turbulence, eddy viscosity, Prandtl's mixing length theory,							
	velocity distribution in turbulent flow over smooth and rough surfaces, minor							
	losses, pipe in series and parallel.							
4	Boundary Layer: Displacement, momentum and energy thickness, boundary	07						
	layer over a flat plate, Prandtl boundary layer equation, laminar and turbulent							
	boundary layer, application of momentum equation, separation and its control,							
	drag and lift, drag on a sphere, 2D cylinder and aerofoil, Magnus effect.	L						
5	Introduction to Hydraulic Machines: Hydraulic Turbines: Introduction to	10						
	Hydroelectric power station and its components, Classification of turbines,	1						
	Heads and efficiencies, Pelton wheel, Francis and Kaplan turbines, specific	1						

speed and unit quantities, Characteristic curves. Pumps: Centrifugal Pumps, specific speed, priming, Characteristic curves, Reciprocating pumps, Comparison between Centrifugal and Reciprocating pumps. Cavitation in pumps and turbines.

Text Books:

- 1. Fox, R.W., McDonald, A.T., "Introduction to Fluid Mechanics, 7th edition", Wiley India.
- 2. Som, S.K., Biswas G, and Chakraborty, S., "Introduction of Fluid Mechanics & Fluid Machines", TMH, New Delhi.
- 3. Milton Van Dyke, "Album of Fluid Motion", Parabolic Press.

Reference Books:

- 1. F. M. White, "Fluid Mechanics," 7th Edition, McGraw-Hill, India.
- 2. Shames, I.H., Mechanics of Fluids, McGraw Hill, International Students Edition.
- 3. Jagdish Lal, Fluid Mechanics, Metropolitan Book Company Ltd., Delhi.
- 4. Vijay Gupta and S.K.Gupta, 'Fluid Mechanics and its Applications', Wiley Eastern Ltd, 1984.

Unit	Content
1	Experiment 1: To verify the momentum equation using the experimental set-up on
	diffusion of submerged air jet.
2	Experiment 2: To study the boundary layer velocity profile over a flat plate and to
	determine the boundary layer thickness.
3	Experiment 3: To study the transition from laminar to turbulent flow and to
	determine the lower critical Reynolds number.
4	Experiment 4: To study the variation of friction factor 'f' for turbulent flow in
	commercial pipes.
5	Experiment 5: To calibrate an orifice meter, venture meter, and bend meter and
	study the variation of the co-efficient of discharge with the Reynolds number.
6	Experiment 6: To study the impact of jets in a flat plate.
7	Experiment 7: To study performance of a Pelton wheel/ Francis turbine/ Kaplan
	Turbine.
8	Experiment 8: To study performance of two Centrifugal pumps connected in series
	and parallel.
9	Experiment 9: To study performance of a Reciprocating pump.

Text Books:

- 1. Singh, S. Experiments in Fluid Mechanics, PHI Learning, New Delhi.
- 2. Prakash, M. N. S., Experiments in Hydraulics and Hydraulic Machines: Theory and Procedures, PHI Learning, New Delhi.
- 3. Majumdar, B., Fluid Mechanics with Laboratory Manual, PHI Learning, New Delhi.

References

- 1. "Instrumentation, Measurements & Experiments Fluids", E. Rathakrishnan, CRC Press, NY, 2007.
- 2. "Low-Speed Wind Tunnel Testing", A. Pope and J.J. Harper, John Wiley & Sons Inc., NY, 1966.
- 3. "Experimental Methods for Engineers", J.P. Holman, McGraw-Hill Inc., NY, 2001.
- 4. "Design & Analysis of Experiments", D.C. Montgomery, Wiley, 7th ed., 2009.

Course Code: MEN13103	Industrial Engineering	Credits: 3-0-0:3
Prerequisites: NIL		

COURSE OUTCOME

S. N.	Outcomes							
CO1	Students will be able to identify and use the elements of cost, methods of depreciation and							
	investment techniques. Productivity, Productivity Measurements and develop entrepreneurial attitude.							
CO2	Students will be able to describe the job evaluation, merit rating and wage-incentive plans.							
CO3	Students will be able to iimplement work study techniques for better productivity and							
	learn to do work measurement and calculate the standard time for doing a job.							
CO4	Students will be able to describe and use different material handling devices, repair and maintenance methods.							
CO5	Students will be able to learn and describe learn about Maintenance Management and Probabilistic Failure causes.							

Course Articulation Matrix:

	Program Outcomes											
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	-	-	3	2	2	2	2	3
CO2	2	2	2	-	-	1	2	2	2	2	3	2
CO3	3	2	2	1	-	1	2	2	2	1	2	3
CO4	3	2	2	2	2	-	3	2	2	2	2	2
CO5	2	2	2	-	2	1	3	2	2	2	3	3

Module	Details	No. Hrs							
1.	Introduction, Engineering Economy and Costing-Plant Location and Layouts,	8							
	Production Systems, Cost Analysis, Break-even Analysis, Methods of								
	Depreciation, Investment/Replacement analysis, Concepts of Production and								
	Productivity, Productivity Measurements.								
2.	Job evaluation, Benefits of Job evaluation, Methods of Job evaluation, Merit								
	Rating, Methods of Merit Rating, Requirements for success of Merit Rating								
	System, Objectives of a Good Wage-Incentive Plan, Basis of a Good Wage-								
	Incentive Plan, Types of Wage-Incentive Plans.								
3.	Work Measurement, Time Study, PMTS, Work Sampling, Method Study,	8							
	Micro Motion Study, Principles of Motion Economy.								
4.	Material Handling System- principles, types, and devices.	6							
5.	Maintenance Management- Probabilistic Failure and Repair Times, Preventive	4							
	Maintenance and Replacement, Total Preventive Maintenance, Concurrent								
	Engineering- steps and CE Environment.								

Text/Reference Books

- 1. Turner, W.C., et. al., 1993, "Introduction to Industrial and System Engineering", Prentice Hall.
- 2. Del Mar, Donald, "Operations and industrial management: designing and managing for productivity", McGraw-Hill,2007
- 3. Ralph M. Barnes, "Motion and Time Study: Design and Measurement of Work", Wiley Publishers
- 4. Chandler Allen Phillips, "Human Factors Engineering", John Wiley and Sons, New York,

Course Code:	Heat and Mass Transfor	Credits:
MEN13102	fieat and wass i ransier	3-0-2:4

Prerequisites: Engineering Thermodynamics **Course Outcomes:**

CO1	Understand the basic modes of heat and mass transfer.
CO2	Apply principles of heat and mass transfer to predict transfer coefficients
CO3	Analyze working of various heat transfer equipment
CO4	Design heat and mass transfer equipment.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	1	1	1	1				3	3	3
CO2	3	2	2	1	1	1	1	1				2	3	2
CO3	2	3	3	2	3	2	1	1				3	2	3
CO4	3	2	3	2	3	2	1	1				3	3	3

Unit	Details	No. Hrs
1	Introduction to Heat Transfer-Modes of Heat transfer; Conduction, convection and radiation; Effect of temperature on thermal conductivity of materials; Introduction to combined heat transfer mechanism. Conduction-One-dimensional general differential heat conduction equation in the rectangular, cylindrical and spherical coordinate systems; Initial and boundary conditions. Steady State one-dimensional Heat Conduction-Composite Systems in rectangular, cylindrical and spherical coordinates with and without energy generation; Thermal resistance concept; Analogy between heat and electricity flow; Thermal contact resistance; Critical thickness of insulation. Two dimensional steady state heat conduction-solution by Numerical Relaxation method.	7
2	Fins-Heat transfer from extended surfaces, Fins of uniform cross-sectional area; Errors of measurement of temperature in thermometer wells. Transient Conduction-Transient heat conduction; Lumped heat capacity method; Time constant; Unsteady state heat conduction in one dimension only, Heisler charts.	5
3	Convective heat transfer fundamentals-Newton's law of cooling, Types of convective heat transfer, Laminar and Turbulent flows, Hydrodynamic boundary layer, Thermal boundary layer, Non-dimensional numbers, Buckingham Pi Theorem. Forced Convection-Flow over a flat plate; Approximate integral boundary layer analysis; Analogy between momentum and heat transfer in turbulent flow over a flat surface; Mixed boundary layer; Flow across a single cylinder and a sphere; Flow inside ducts; Empirical heat transfer relations; Relation between fluid friction and heat transfer; Liquid metal heat transfer. Natural Convection-Physical mechanism of natural convection; Buoyant force; Empirical heat transfer relations for natural convection over vertical planes and	6

	cylinders, horizontal plates and cylinders, and sphere; Combined free and forced convection.	
4	Thermal Radiation-Basic radiation concepts; Radiation properties of surfaces; Black body radiation Planck's law, Wein's displacement law, Stefan Boltzmann law, Kirchoff's law; Gray body; Shape factor; Black-body radiation; Radiation exchange between diffuse non black bodies in an enclosure; Radiation shields; Radiation combined with conduction and convection.	5
5	Heat Exchanger-Types of heat exchangers; Fouling factors; Overall heat transfer coefficient; Logarithmic mean temperature difference (LMTD) method; Effectiveness-NTU method; Compact heat exchangers.	4
6	Condensation and Boiling-Introduction to condensation phenomena; Heat transfer relations for laminar film condensation on vertical surfaces and on outside & inside of a horizontal tube; Effect of non-condensable gases; Dropwise condensation; Heat pipes; Boiling modes, pool boiling; Hysteresis in boiling curve; Forced convective boiling.	4
7	Introduction to Mass Transfer-Introduction; Fick's law of diffusion; Steady state equimolar counter diffusion; Steady state diffusion though a stagnant gas film.	3

Text Books:

1	Fundamentals of Heat & Mass transfer	Incropera F.P., Dewitt.D.P.	John Wiley & Sons (Pvt). Lto		
2	Heat and Mass Transfer (In SI units) A practical approach	Yunus A. Cengel	TMH Education pvt. Ltd.		
3	Heat and Mass Transfer	PK Nag	McGraw-Hill Education Europe		

References:

1	Principles of Heat Transfer	Frank Kreith	McGraw-Hill Boo	k co.	
2	Fundamentals of Momentum, Heat	James	John Wiley &Sons (Pvt). L		
	and Mass Transfer	R.Welty			
3	Heat Transfer	J.P. Holman	McGraw-Hill	International	
			edition		
4	Heat Transfer: A Basic Approach	<u>Ozisik</u> ,N.	McGraw-Hill Inc.	,US	

Unit	Details	No. Hrs
1	Study of the heat transfer in pin fin apparatus.	3
2	Study of the heat transfer in natural convection apparatus.	3
3	Study of the heat transfer in the forced convection apparatus.	3
4	Study of the Stefan Boltzmann apparatus and estimation of Stefan Boltzmann	3
	constant.	
5	To estimate the thermal conductivity of metal bar.	3
6	Study of heat transfer through Heat pipe.	3
7	Study of emissivity measurement apparatus.	3
8	To estimate the thermal conductivity of insulating powder	3
9	Study of heat transfer in lagged pipe apparatus.	3
10	To estimate effectiveness in double pipe heat exchanger.	3

edition

1			
1	Principles of Heat Transfer	Frank Kreith	McGraw-Hill Book co.
	Fundamentals of Heat & Mass	Incropera F.P., Dewitt.	John Wiley & Sons (Pvt).
	transfer	D. P.	Ltd.
2	Heat and Mass Transfer (In SI units) A practical approach	Yunus A. Cengel	TMH Education pvt. Ltd.
3	Fundamentals of Momentum,	James R.Welty	John Wiley &Sons (Pvt). Ltd.
	Heat and Mass Transfer		
4	Heat Transfer	J. P. Holman	McGraw-Hill International

Basic Electrical and Electronics

Credits: 2-0-2:3

Prerequisites: NIL A. Course Outcomes

CO1 Acquire the basic knowledge of electrical circuit simplification along with various concepts

	to simplify them
CO2	Acquire basic knowledge and general concepts related to 1-phase/ 3-phase AC circuits and
	power, including its measuring procedure and applications
CO3	Acquire knowledge and be able to conceptualize general concepts related to static and
	rotating electric machines along with their working and applications
CO4	Be able to understand general concepts of the working of power system along with general
	domestic wiring including safe and economic use of electrical power
CO5	Be aware with the electronic devices and related basic concepts along with the number
	system theory

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	1	1	2	-	1	-	-	-	-	-	1	1
CO2	1	3	1	2	2	-	1	1	-	-	-	-	1	1
CO3	2	1	1	1	1	-	1	-	-	-	-	1	3	1
CO4	2	1	3	1	1	2	2	1	-	-	-	1	3	2
CO5	2	2	1	2	2	-	2	-	-	-	-	1	1	1

Unit	Contents	Hours
1	DC Circuit Ohm's Law, Kirchhoff's Laws, Source Conversion, Star Delta	
	transformation, Network Theorems - Superposition theorem, Thevenin's theorem,	
	Norton's Theorem, Maximum Power Transfer Theorem	
2	A.C. Circuit	
	Sinusoidal AC voltage, Average value, R.M.S. value, form factor and peak factor of	
	AC quantity, Concept of phasor, Power factor, impedance and admittance, Active,	
	reactive and apparent power, analysis of R-L, R-C, R-L-C circuit, 3-phase AC	
	Circuits: balanced and unbalanced supply and loads. Relationship between line and	
	phase values for balanced star and delta connections. 3-phase Power measurements.	
3	Electrical Machines	
	Basics- construction, working and applications of transformer, DC machine, 3-	
	phase induction motor and synchronous machine. Losses in electrical machines.	
4	Introduction to Power System and Electrical Safety	
	Basics of Power System (Generation, Transmission & Distribution-general layout).	
	Electrical safety, domestic wiring & electrical measurements, Electrical lightning	
	devices, Energy saving and star ratings, Basic principle of earthing.	
5	Fundamental of Electronics:	
	Basic Electronics - Construction, working and V-I characteristics of diodes. SCR	
	and their applications. Transistors-(BJT, FET, MOSFET), Construction, working,	
	type of configuration, and characteristics Digital- number system, logic gates,	
	Karnaugh map	

Text / Reference books

- 1. Vincent Del Toro, "Electrical Engineering Fundamentals"
- 2. Smarajt Ghosh, "Fundamentals of Electrical & Electronics Engineering", Second edition, PHI Learning, 2007.
- 3. Metha V.K, RohitMetha, "Basic Electrical Engineering", Fifth edition, Chand. S & Co. 2012.
- **4.** Kothari.D.P and Nagrath.I.J, "Basic Electrical Engineering", Second edition, Tata McGraw Hill, 2009.
- 5. Horowitz and Hill, "Art of Electronics", Cambridge University Press.
- 6. Robert L. Boylestad and Louis Nashelsky "Electronic Devices and Circuit Theory" Tenth Edition, Pearson Education, 2013

Semester IV

Computer Aided Geometrical Modelling

Credits: 3-0-2:4

Prerequisites: Mathematics – I and Mathematics – II

Course Outcomes:

CO1	Students will be able to model the objects geometrically with parametric curves.
	J J J I
CO2	Students will be able to apply geometrical transformations and projection methods to an
	available geometric model.
CO3	Students will be able todesign surface and solid models of the objects.
CO4	Students will be able to analyse the applications of solid modelling in different fields.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	1	3	-	-	1	1	3	-	2	3	3
CO2	3	2	1	1	3	-	-	1	1	3	-	2	3	3
CO3	3	2	1	1	3	-	-	1	1	3	-	2	3	3
CO4	3	2	1	1	3	-	-	1	1	3	-	2	3	3

Unit	Details	No. Hrs
1	Introduction: Historical Development, Vectors, Coordinate Systems, Intrinsic and Extrinsic properties, Explicit and Implicit Equations, Parametric Equations, Parametric Space.	2
2	Design of Curves: Parametric Representation, Hermite curve: Basis functions, Reparametrization, Composite curve, Bezier Curve: Basis functions, de- Casteljaualgorithm, Degree elevation, Composite Bezier curve, B-Spline Curve: Basis functions, Knot vectors, Closed B-Spline Curve, Knot insertion, Rational curves, NURBS.	8
3	Geometric Transformations: Translation, Rotation, Shear, Scaling and Reflection, Homogeneous Transformations, Orthographic Projections, Axonometric Projections, Oblique Projections, Perspective Projection.	6
4	Design of Surfaces: Parametric Representation, Plane, Cylindrical and Ruled Surfaces, Surfaces of Revolutions, Bezier Surface, B-Spline and NURBS Surfaces.	7
5	Design of Solids: Topology, Set theory, Boolean operators, Solid Model Construction: Half-Spaces, Constructive Solid Geometry, Boundary Representation, Sweep Representation, Analytical Solid Modelling, Spatial Enumeration, Octree Encoding.	8
6	Data exchange formats, Application of Geometric Models: Finite Element Modelling.	4

Text Books:

1	Geometric Modeling	M E Mortenson	McGraw Hill Education
2	Mathematical Elements of Computer	D F Rogers and J	McGraw Hill
	Graphics	AAdams	Education
3	CAD/CAM: Theory and Practice	Ibrahim Zeid	McGraw Hill
	(Special Indian Edition)		Education
4	The Finite Element Method in	S S Rao	Elseveir
	Engineering		
Refere	ences:		
1	Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide	G. Farin	Academic Press
2	Computer-Aided Engineering Design	A Saxena and B Sahay	Springer
3	Bezier and B-spline Techniques	H. Prautzsch, W. Boehm,	Springer-Verlag
	1 1	M. Paluszny	1 0 0
4	Computer Aided Design and	https://nptel.ac.in/courses/11	12102101
	Manufacturing		

5 Computer Aided Engineering Design https://nptel.ac.in/courses/112104031

Experiment	Details	No. Hrs.
	Using available CAD software, attempt:	
1	To understand the interface, input and output options of the software	2
	and create a 2D drawing of a given object.	
2	To create surface models of a given object.	4
3	To create solid model of a given object.	4
4	To create assembly models of different objects.	4
	Using MATLAB [®] software, attempt:	
5	To execute the following basic functions: matrix operations, control	2
	statements, mathematical operations, 2D and 3D graphical plots,	
	keyboard and mouse inputs, file handling.	
6	To draw a Bezier curve of n^{th} degree using (a) Matrix and (b) Blending	2
	function approach based on the user inputs. Also demonstrate the	
	effect of different control points on the shape of the curve generated.	
7	To draw B-Spline curve of a given order for the given control points.	4
	Also demonstrate the effect of different curve parameters on the shape	
	of the curve generated.	
8	To demonstrate the applications of different Geometric	2
	Transformations (translation, rotation, scaling and reflection) on a	
	rectangle of size $l \times w$ and different Projections (orthographic,	
	axonometric, oblique and perspective) on a rectangular box of size	
	$l \times w \times h$	
9	To draw Bezier Surface demonstrating the effect of surface parameters	2
	on the shape of the generated surfaces.	
10	To draw B-spline Surface demonstrating the effect of surface	2
	parameters on the shape of the generated surfaces.	

Course Code: MEN14103

Manufacturing Science and Technology-I

Credits: 3-0-2:4

Pre-requisites: Workshop and Manufacturing Processes

Course Outcomes

CO1	Students will be able to apply the concept of metal casting processes in any											
	manufacturing or foundry industry.											
CO2	Students will be able to apply the concept of plastic molding and powder metallurgy											
	technique in any manufacturing or powder metallurgy industry.											
CO3	Students will be able to apply the concept of bulk and sheet metal forming processes											
	in any manufacturing or metal forming industry.											

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1	-	1	1	1	2	-	1	3	2
CO2	3	3	2	1	1	-	1	1	1	2	-	1	3	2
CO3	3	3	3	1	1	-	1	1	1	2	-	1	3	2

Course Contents:

Unit	Details	Hrs
1	Metal Casting: Sand Mould Casting-Pattern Design and Moulding; Gating Design	12
	and Pouring; Solidification and Riser Design; Shell Moulding and Vacuum	
	Moulding; Investment Casting and Evaporative Casting; Plaster Mould and	
	Ceramic Mould; Metal Mould Casting: Die Design and Preparation; Pouring and	
	Solidification; Opening and Ejecting; Gravity and Pressure Die Casting, Vacuum	
	and Slush Casting; Centrifugal and Continuous Casting; Squeeze and Chilled	
	Casting; Defects and Inspection of Casting	
2	Plastic Molding and Powder Metallurgy: Classification of Moulding Processes,	6
	Extrusion and Injection Moulding, Compression and Transfer Moulding, Blow and	
	Rotational Moulding; Glass-working Science and Technology: Raw material	
	preparation; shaping of Piece Ware and Flat and Tubular glass. Production and	
	Mixing of Metal Powders; Press Compacting and Sintering, Hot Isostatic Pressing	
	(HIP), and Powder Injection Moulding (PIM); Powder Metallurgy Materials and	
	Products	10
3	Bulk Metal Forming: Yielding and Flowing; Hot and Cold Forming; Friction	12
	and Lubrication; Flat Rolling: Classification, Process geometry and Analysis	
	using slab method for load and power; Rolling mills and Roll pass design;	
	Rolling defects; Forging: Classification, Process Geometry and Analysis of	
	Strip and Disc forging using slab method for load and power; Forging defects;	
	wire Drawing: Process Geometry and Analysis using slab method for load and	
	power, Maximum reduction, Drawing detects; Extrusion: Classification,	
	Process Geometry and Analysis of Extrusion using stab method for load and	
	Sheet Metal Forming: Material behaviour: Sheering: Types, Charanae and	6
4	Calculation of Forces: Miscellaneous sheet metal cutting processes Cut off and	0
	Calculation of Forces, Wiscenaricous sneet inclar cutting processes-Cut-off and Darting: Slotting Derforgting and Notching Trimming Shaving and Fina	
	Planking, Soluting, Ferrorating and Notering, Trimming, Shaving and File	
	Dianking, Denuing-Types, Anowances, Springback and Calculation of Force,	

Drawing-Types, Clearance, Measure of Drawing, Calculation of Forces; Spinning-Types and Calculation of Forces; Miscellaneous sheet metal forming processes-Ironing, Coining and Embossing; Lancing and Twisting; Stretching and Hydroforming; Impulse Forming (Explosive, Electro-hydraulic and Electromagnetic) and Laser forming; Dies and Presses for Sheet Metal Processes.

Text/Reference Books:

- 1. Groover's Principles of Modern Manufacturing: Materials Processes and Systems by M. P. Groover, John Wiley and Sons, New Delhi (SI Edition)
- 2. Manufacturing Science by Ghosh and Mallik, East West Press Pvt. Ltd., New Delhi
- 3. Manufacturing Engineering and Technology by Kalpakjian and Schmid, Pearson Education Pvt. Ltd. New Delhi

Unit	Details	Hrs
1	Design and Preparation of a wooden pattern for the given dimensions of a casting of	2
	V- block made of Cast Iron/Steel	
2	Preparation of machine mould as per the dimensions of a given part and study of	2
	moulding methods used in Foundry Shop.	
3	Study of Sieve Shaker and to find Grain Fineness Number for a given sample of	2
	foundry sand.	
4	Study of Permeability Tester and to find Permeability Number for a given sample of	2
	foundry sand.	
5	Study of Strength Tester and to find green compression and shear strength of a given	2
	sample of green sand.	
6	Study of Moisture and Clay Content Tester and to find the moisture content and clay	2
	content in a given sample of green sand.	
7	Study of Shatter Index Tester and to find shatter index of a given sample of green	2
	sand.	
8	Determination of sheet length and bending force required for forming the given 'Z'	2
	section.	
9	Study of Power Press and Power Hammer	
10	Study of Hydro Forming Process and making a cup shaped part using Sheet Hydro	2
	Forming Setup.	

Books:

- 1. Principles of Foundry Technology by P.L. Jain, Tata McGraw Hill
- 2. Manufacturing Technology: Foundry ,Forming and Welding by P.N. Rao, Tata McGraw Hill
- 3. A course in Workshop Technology by B. S. Raghuwanshi, Dhanpat Rai & Co.

Course Code:		Credits:
HS****	Principles of Management	3-0-0:3

Pre-requisites: NIL

Course Outcome

S.N.	Outcomes
CO1	To understand the management concepts and its application with the help of case studies.
CO2	To understand various functional dimensions of management in the business organizations.
CO3	To identify and apply the steps involved in the professional decision making
CO4	To apply managerial and economic concepts in the professional decision making.
CO5	To solve case scenarios of real situations in the day-to-day activities

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	_	-	1	2	-	1	-	1	2	2	2	-	-	2
CO2	-	-	1	2	-	1	-	2	3	2	3	-	-	2
CO3	-	-	1	2	-	3	-	3	3	2	3	-	-	2
CO4	-	-	1	2	-	3	-	3	3	2	3	-	-	2
CO5	-	-	1	2	-	3	-	3	2	2	3	-	-	2
Module							Con	tent						Lectures
1	Introduction to Management: Definition of Management – Science or Art – Management and Administration, Functions of Management – Types of Business Organisation. Levels of management and Managerial skills. School of Management Thoughts: Evolution of Management thoughts, classical approach, neo- classical approach, contribution of Taylor, weber and Fayol, modern approach.													6
2	Planning: Nature & Purpose – Steps involved in Planning, Objectives, Setting Objectives, Process of Managing by Objectives, Strategies, Policies & Planning Premises Forecasting and Decision-making.Organising: Nature and Purpose – Formal and informal organization – Organization Chart – Structure and Process – Departmentation by difference strategies – Line and Staff authority – Benefits and Limitations – De- Centralization and Delegation of Authority – Staffing – Selection Process - Techniques – HRD – Managerial Effectiveness.												8	
3.	Direct Harm Hiera Enrict Break Comr Orga and techn	ting: onizin rchy hmen dowr nunic nunic stress iques,	Scong Ob of new t - C ation. ation. ional inter	pe – pjectiv eds – ommu Effe Beha magen person	Hun ves – Moti unicat ective nvioun ment. nal rel	nan Leade vation ion – Co :: Org Per s ations	Factor ership theo: Proce mmur ganiza sonali	rs – – Ty ries – ess of icatic tional ty: 1	Crea pes o Moti Com on – char ypes,	ntivity f Lead vationa munica - Elec nge, Co theor	and ership al Tech ation – ctronic conflict ies ar	Innovat Motiva miques Barrie med Manag nd gro	tion – ation – S – Job ers and ia in gement	8

ontrolling: System and process of Controlling – Requirements for effective	
ontrol - The Budget as Control Technique - Information Technology in	
ontrolling – Use of computers in handling the information – Productivity –	
roblems and Management - Control of Overall Performance ; Coordination	
nd Contemporary international management practices:; MNCSs. TNCs.	
I&A.	8
roduction concepts and analysis: Production function, Types of production	
nction, Laws of production: Law of diminishing returns, Law of returns to	
cale.	
ost concept and analysis: Types of costs, Cost output relationship in the	
nort-run. Cost output relationship in the Long-run.	
ntroduction to Financial Management	
oncept of finance, scope and objectives of finance; Profit maximization vs.	
Vealth maximization; Functions of Finance Manager in Modern Age;	
inancial decision areas, Sources of Finance.	
ime value of money: Compounding Techniques, Discounting Techniques	10
inking Fund, and Amortization of loan.	
isk and Return analysis: Return on single securities, portfolio return,	
tandard deviation, Coefficient of Variation, Systematic risk and	
nsystematic Risk.	
	ontrolling: System and process of Controlling – Requirements for effective ontrol – The Budget as Control Technique – Information Technology in ontrolling – Use of computers in handling the information – Productivity – roblems and Management – Control of Overall Performance ; Coordination and Contemporary international management practices:; MNCSs. TNCs. &A. roduction concepts and analysis: Production function, Types of production nction, Laws of production: Law of diminishing returns, Law of returns to ale. ost concept and analysis: Types of costs, Cost output relationship in the tort-run. Cost output relationship in the Long-run. ntroduction to Financial Management oncept of finance, scope and objectives of finance; Profit maximization vs. Yealth maximization; Functions of Finance Manager in Modern Age; nancial decision areas, Sources of Finance. ime value of money: Compounding Techniques, Discounting Techniques nking Fund, and Amortization of loan. isk and Return analysis: Return on single securities, portfolio return, andard deviation, Coefficient of Variation, Systematic risk and nsystematic Risk.

Text Books:

1. Tripathy PC And Reddy PN, "Principles of Management", Tata McGraw-Hill,.

2. Decenzo David, Robbin Stephen A, "Personnel and Human Reasons Management", Prentice

HallofIndia,3. JAF Stomer, Freeman R. E and Daniel R Gilbert, "Management", Pearson Education, SixthEdition,

4. Fraidoon Mazda, "Engineering Management", Addison Wesley, 5. Harold Koontz & Heinz Weihrich "Essentials of Management", Tata McGraw-Hill,

6. Joseph L Massie "Essentials of Management", Prentice Hall of India, (Pearson) Fourth Edition,

7. Managerial Economics: Concepts and Applications (SIE), THOMAS& MAURICE, McGraw-Hill Education

8. Van Horne - Financial Management and Policy, Prentice Hall of India

Kinematics and Dynamics of Machines

Credits: 3-0-0:3

Pre-requisites: Engineering Mechanics

Course Outcomes

CO1	Apply the graphical methods and analytical Computations involved in the mechanisms to analyze the position, velocity and acceleration of a mechanism.									
CO2	Draw velocity and acceleration diagrams for cams and followers executing various kind of									
	motions for various configuration of followers.									
CO3	Select gear and gear trains for a particular application in automobile and various industries									
	employing gears as power transmission tools.									
CO4	Mathematically model and analyze the effects of the static and dynamic forces that									
	mechanisms/machines may experience commonly and work upon the control of									
	fluctuations of energy									
CO5	Solve the problems associated with the unbalance present in rotating and reciprocating masses.									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	1	-	1	2	-	-	1	-	2	1	3	3
CO2	3	3	2	2	2	2	-	-	1	-	2	2	3	3
CO3	3	3	2	2	2	2	3	-	2	2	3	3	3	3
CO4	3	3	3	3	3	1	2	-	2	2	1	2	3	3
CO5	3	3	3	3	1	2	1	-	2	1	1	2	3	3

Unit	Details	Hrs.
1	Velocity and Acceleration in Mechanism -Introduction to Kinematic Links and Pairs, Inversion of Mechanism, Velocity of a Link, Relative Velocity Method, Instantaneous Center Method, Kennedy's Theorem for Three Centers, Acceleration Diagram, Coriolis Component of Acceleration.	12
2	Cams -Classification of Cams and Followers, Nomenclature, Types of Follower Motion, Generation of Cam Profile with Uniform Velocity, SHM, Uniform Acceleration and Retardation, Cycloidal Motion of The Follower.	6
3	Gear and Gear Trains - Types. Terminology, Fundamental Law of Gearing, Gear Profiles, Undercutting, Gear Trains: Simple, Compound, Reverted and Epicyclic Gear Trains.	6
4	Static and Dynamic Force Analysis -Static Force Analysis of Planar Mechanisms, Dynamic Force Analysis Including Inertia and Frictional Forces of Planar Mechanisms, Turning Moment Diagram for Engines and Speed Fluctuation, Flywheel.	10
5	Balancing of Rotating and Reciprocating Masses- Static Balance, Dynamic Balance, Balancing of Rotating Masses, Two Plane Balancing, Balancing of Single and Multi-Cylinder Engine, Firing Order.	6

- 1. Kinematics & Dynamics of Machinery by R. L. Norton, McGraw Hill
- 2. Kinematics, Dynamics and Design of Machinery by K.J. Waldron & G. L. Kinzel, Wiley
- 3. Theory of Machines and Mechanisms by John J. Uicker, Jr. Gordon R. Pennock& Joseph E. Shigley, Oxford University Press

Reference Books

- 1. Theory of Machines by S.S. Ratan, Tata McGraw-Hill.
- 2. Theory of Machines by Thomas Bevan, CBS Publishers & Distributors.
- 3. Kinematics and Dynamics of Machines by George H. Martin, Overseas Press Pvt. Ltd., India

4. Theory of Mechanisms and Machines by Amitabha Ghosh & Asok Kumar Mallik, Affiliated East-West Press

Additional references

- Theory of Machines by S.S. Ratan, Tata McGraw-Hill.
- Theory of Machines by Thomas Bevan, CBS Publishers & Distributors.
- Kinematics and Dynamics of Machines by George H. Martin, Overseas Press Pvt. Ltd., India
- Theory of Mechanisms and Machines by Amitabha Ghosh & Asok Kumar Mallik, Affiliated East-West Press

Course Code: MEN14104

Metrology and Quality Engineering

Credits: 3-0-0:3

Prerequisites: Introduction to Manufacturing and basic statistics

Course Outcomes:

CO1	Students will be able to illustrate and apply concepts of Metrology, fits & tolerances, surface
	texture, concept of flatness, linear, angular and taper measurement devices for measurement
	of various components.
CO2	Students will be able to illustrate and apply methods of measurement of screw threads and
	gear tooth profile in field of modern manufacturing.
CO3	Students will be able to illustrate the basic techniques of quality improvement, fundamental
	knowledge of statistics and probability. Tools and techniques and apply the concepts of six
	sigma in the manufacturing & service sectors.
CO4	Students will be able to use and plan control charts to describe& analyze for improving the
	process quality and describe the method of continuous process improvement and
CO5	Students will be able to describe and generate different sampling plans and utilize them in
	industrial problem solving with case studies.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	2	1	-	2	2	2	2	3	3	2
CO2	2	3	3	2	2	2	2	2	3	2	3	3	2	2
CO3	3	2	2	-	2	1	-	2	2	2	2	3	3	3
CO4	2	3	3	2	2	2	2	2	3	2	3	3	2	2
CO5	3	2	3	2	-	3	1	-	2	3	3	2	3	3

UNIT	Details	No.
		Hrs
1.	Introduction to Metrology: Fundamental Definitions, Types of Standards,	
	Precision and Accuracy, Measurement Errors, System of Limits, Fits,	
	Tolerance and Gauging: Definition of tolerance, Specification in assembly,	
	Principle of interchangeability, linear, measurements by Vernier caliper,	o
	micrometer, slip gauges, Angular Measurement: Universal bevel protractor,	0
	clinometers, sine bar, angle Comparators : Definition, Classification, Working	
	principle of Mechanical, Opto-mechanical, Pneumatic and	
	Electrical/Electronic comparators with advantages, limitations and uses.	
2.	Surface Texture measurement: Surface roughness, Waviness, Roughness	
	Parameter Ra, Rz, RMS etc., Surface roughness symbols, Flatness Test	
	measurement by Interference principle: Concept of Flatness, Interferometer	6
	principle for measurement, Optical Flats - study of Surface textures under	
	monochromatic light source, fingertip test technique	
3.	Measurement of tooth thickness: Gear tooth vernier, Constant chord method,	
	Addendum comparator method and Base tangent method, Measurement of	6
	tooth profile: Tool maker's microscope or projector, Involute tester,	0
	Measurement of pitch, Measurement of run out, Lead and Backlash checking.	

	Measurement of concentricity, Alignment of gears. Screw Thread	
	Measurement: Errors in threads, screw thread gauges, measurement of element	
	of the external and internal threads, thread caliper gauges.	
4.	Definition of quality, Basic concept of quality, definition of SQC, benefits and	
	limitation of SQC. Comparison of Inspection, Quality control and Quality	c
	assurance, concept of quality cost, seven quality control tools and its	0
	application, 7 New Quality Improvement Tools and its application	
5.	Control Charts- General theory of Control Charts, Group Control Charts.	
	Shewhart control chart for process control; Control Charts for variables such	
	as X, R Control Charts for charts for attributes such as c and p charts;	c
	Acceptance control chart; Cumulative Sum Control Charts; Subgroup	D
	selection; Process Capability,. Six Sigma: The Concept of Six Sigma,	
	Objectives of Six Sigma, The Frame-Work of Six Sigma	
6.	Acceptance Sampling- Multiple and Sequential Sampling Plans, Multi-	
	Continuous Sampling Plan, Acceptance Sampling by Variables, Advantages &	c
	limitations. Sampling plans using different Criteria. Comparison of various	0
	types of sampling plans. Introduction to Quality Standards and Quality Circle.	

Text Books

- 1. Engineering Metrology and Measurements by NV Raghavendra, L Krishna murthy, Oxford publishers.
- 2. Introduction to Statistical Quality Control Douglas C. Montgomery John Wiley & Sons, Inc.
- 3. Quality Engineering in Production Systems, by G Taguchi, McGraw Hill, 1989.
- 4. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.

Reference Books

- 1. Dimensional Metrology, Connie Dotson, Cengage Learning.
- 2. Engineering Metrology by KL Narayana, Scitech publishers.
- 3. Juran's Quality Planning and Analysis, by Frank. M.Gryna Jr. McGrawHill

Course Code: MEN14102

Instrumentation and Process Control

Credits: 3-0-2:4

Pre-requisites: Physics, Basic Electrical and Electronic

Course Outcome

CO1	Students will be able to understand the basic calibration, possible errors and measures to minimize them based on their characteristics.
CO2	Students will be able to apply knowledge on sensors and their suitability in the application of measuring different physical quantities and their ranges
CO3	Students will be able to apply working principles in the measurement of field quantities.
CO4	Students will be able to analyze the process control systems based on the requirement.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1	-	1	-	3	3	3
CO2	3	2	2	1	1	1	1	1	-	-	-	3	3	3
CO3	3	3	3	2	3	2	1	1	-	-	-	3	3	3
CO4	3	3	3	2	3	2	1	1	1	1	1	3	3	3

Unit	Details	No. Hrs
1	Instruments and measurement system: Functions of instruments and measurement system, Elements of generalized measurement system, error in measurements, calibration and standards, Statistical analysis of experimental data	7
2	Classification and selection of instruments: Classification of instruments, Analog and digital modes of operation, Instrument selection criteria and installation procedures	6
3	Characteristics of instruments and measurement systems: Static characteristics of measuring instruments, Dynamic characteristics of measuring instruments	4
4	Indicating instruments: Essentials of indicating instruments, Principles of indicating instruments and their applications like wattmeter, watt-hour meter, dynamometer type power factor meter	6

5	Transducers: Introduction to sensors and transducers, Mechanical input transducers, Electrical transducers like Resistive, Capacitive & Inductive transducers, Measurement of various physical quantities like pressure, temperature, force, liquid level, flow, speed and humidity						
6	Signal Conditioning and Data Acquisition System: Introduction, Signal Conditioning, Multiplexing, Accuracy of Digital Meter, Aperture Time for Sample and Hold Mechanism, image processing, signal analysis and FFT Display Devices And Recorders: Recorders, X-Y Plotter	5					
7	Process Control: Introduction, Proportional Control, Integral Control, Derivative Control, Proportional-cum-integral Control (PI Control), Proportional-cum-integral-cum-derivative (PID) Control, Integral Windup, Electronic Controller, Pneumatic Controller, Selection of Control Technique, Three-element Control (Concept of Feed Forward)	5					

Text Books

1	FundamentalsOfInduInstrumentation and ProcessControl	ıstrial ol	William C Dunn	Tata McGraw-Hill, New Delhi		
Refe	rences:					
1	Measurement systems – Application and Design	on	E.O. Doebelin	Tata McGraw-Hill, New Delhi.		
2	A course in Electronic and Electric Measurements	al	J. B. Gupta	S. K. Kataria and Sons, New Delhi.		
3	Process control instrumentation technology		C. D.Johnson	John Wiley & Sons, New York.		
4	Mechanical Measurements and Instrumentation		R.K. Rajput	S. K. Kataria & Sons, New Delhi.		
5	Principles of Measurement System	s,	John P. Bentley,	Pearson India Ltd.		
6	Instrumentation, Measurement and Analysis,		Nakra, Chaudhary,	Tata McGraw-Hill, New Delhi.		
7	Transducers and instrumentation.		D. V. S. Moorthy,	Prentice Hall of India Pvt. Ltd.		

Unit	Details	No. Hrs
1	Study the displacement and current characteristics in Linear variable differential transformers (LVDT).	02
	Find the relationship between displacement and change in signal generated due to Capacitive type transducer (Proximity Tutor).	
2	To draw the calibration graph for the Bimetallic transducer using a thermometer as standard and determine the time constant for the transducer.	02
3	Find the relationship between displacement and change in signal generated	

	due to strain gauge.	02
	To calibrate the given force measuring elastic transducer for compression and tensile loads.	
4	To plot the calibration graph between the temperature and RTD readings.	02
	To study the variation of light intensity with distance form source with a luxmeter.	
5	Calibration of Bourdon pressure gauge for (i) above atmospheric pressure, and (ii) below atmospheric pressure conditions	02
6	To make the study and use of micrometer and depth gauge	02
	To measure the angle of a given taper specimen with the help of a clinometers first and then calculate the accurate value using sine bar.	
7	To determine the diameter of a specimen and the error in given specimen with the help of passameter and slip gauges.	02
8	To measure the screw parameters i.e. external diameter, pitch, flank angle using Tool Makers Microscope.	02
	To determine the outside and core diameter of a given specimen with the help of Floating carriage micrometer	
9	To study the three mode (PID) control of level, flow, pressure and temperature	4

Text Books

1	Fundamentals	Of	Industrial	William C Dunn	Tata McGraw-Hill, New
	Instrumentation an	nd Proce	ess Control		Delhi

References:

1	Measurement systems – Application and Design	E.O. Doebelin	Tata McGraw-Hill, New Delhi.
2	A course in Electronic and Electrical Measurements	J. B. Gupta	S. K. Kataria and Sons, New Delhi.
3	Process control instrumentation technology	C. D. Johnson	John Wiley & Sons, New York.
4	Mechanical Measurements and Instrumentation	R.K. Rajput	S. K. Kataria & Sons, New Delhi.
5	Principles of Measurement Systems,	John P. Bentley,	Pearson India Ltd.
6	Instrumentation, Measurement and Analysis,	Nakra, Chaudhary,	Tata McGraw-Hill, New Delhi.
7	Transducers and instrumentation.	D. V. S. Moorthy,	Prentice Hall of India Pvt. Ltd

Scheme and Syllabi

w.e.f.2022-23

Core Elective

Course Code: MEN14254

Optimization Methods in Engineering

Credits: 3-0-0: 3

Prerequisites: Mathematics 1

Course Outcomes:

CO1	Student will be able to understand the terminology and formulation of optimization problems and solve linear programming problems.
CO2	Student will be able to formulate and solve the single and multi-variable non linear optimization problemsusing a variety of methods.
CO3	Student will be able to formulate and solve the constrained and specialized multi-variable non linear optimization problemsusing a variety of methods and Matlab software.
CO4	Student will be able to formulate and solve the multi-variable non linear optimization problemsusing a variety of nature inspired optimization method sand Matlab software.

	PO1	PO	PO1	PO1	PO1	PSO	PSO							
		2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	3	3	2	1	1	2	1	1	2	1	1	2	3	3
CO2	3	2	2	2	2	1	1	1	2	1	1	3	3	3
CO3	3	2	2	2	1	1	1	1	1	-	1	2	3	3
CO4	3	2	2	3	2	2	1	1	2	1	2	3	3	3

Unit	Details	No. Hrs					
1	Introduction- Terminology, Design Variables, Constraints, Objective Function,	4					
	Variable Bounds, Problem Formulation, Engineering Optimization Problems, Calculus						
	Method, Linear Programming- Simplex Method, Concept of Duality.						
2	Single Variable Optimization Problems: Optimality Criterion, Bracketing	4					
	Methods:Bounding Phase Method. Region Elimination Methods: Golden Section						
	Method. Gradient Based Methods: Newton-Raphson Method. Application to Root						
	finding						
3	Multivariable Optimization Algorithms: Optimality Criteria, Direct Search Methods:	8					
	Powell's Conjugate Direction Method. Gradient Based Methods: Cauchy's Steepest						
	Descent Method, Newton's method, Powell's Conjugate Gradient Method. Problem						
	solving using Matlab						
4	Constrained Optimization Algorithms: Kuhn Tucker Conditions, Transformation	6					
	Methods: Penalty Function Method, Method of Multipliers. Sensitivity	Ũ					
	Analysis.Problem solving using Matlab						
5	Specialized Algorithms: Integer Programming: Branch and Bound Method. Geometric	4					
	Programming	-					
6	Nature Inspired Optimization Algorithms: Genetic Algorithms: GAs for multi-	10					

variable constrained optimization, Simulated Annealing, Ant Colony Optimization, Particle Swarm Optimization, Multi-Objective optimization. Problem solving using Matlab

Text Books:

1	Optimization	for	engineering	design:	Kalyanmoy Deb	Prentice-HallIndia
	algorithms and	exampl	les			
2	Optimization - A	Algorit	hms and Applica	ations	R. K.Arora	CRC Press, 2015
D	famoreaaa					

References:

1.	Engineering optimization - methods and applications	 A. M. Natarajan, P. Balasubramani, A. Tamilarasi 	Pearson Education, 2013.
2.	Engineering optimization: theory and practice	Singiresu S Rao	4 th Edition, New
3.	Introduction to Optimum Design	J. S. Arora	Age Publishers 4th Edition – Elsevier, 2016
4.	Operations Research Theory and Applications	J. K. Sharma	MacMillan India
5.	https://www.youtube.com/watch?v=aJKuM4U	-eYg	
6.	http://www.digimat.in/nptel/courses/video/111	105039/L31.html	

Course Code: MEN14253 Noise and Vibration	Credits: 3-0-0:3
--	------------------

Prerequisites: Basic knowledge of science and engineering

Course Outcomes:

CO1	Students will be able to understand the concept of noise and vibration in the design of
	products and systems.
CO2	Students will be able to formulate the analytical and numerical model for noise and
	vibration in the system.
CO3	Students will be able to analyze and determine the effect of system parameters on noise
	and vibration.
CO4	Students will be able to acquire the noise and vibration of the machine and will provide
	the solution to minimize it.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				3	3	3
CO2	3	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1				3	3	3
CO4	3	3	3	2	3	2	1	1				3	3	3

Unit	Details							
1	Random aspects of noise, traffic noise, community noise, automobile noise, jet	5						
	noise, aircraft noise, Signal Analysis and Fast Fourier Transform (FFT)							
2	Sonic bang, acoustic fatigue, industrial noise, noise in piping system.	5						
3	Identification of noise sources and control, Automotive noise control principles, Sound in enclosures, Sound energy absorption, Sound transmission through barriers.	5						
4	Noise control: types and design of exhaust mufflers, sound absorbing materials.	5						
5	Noise measurement and instrumentation, Effect of noise on human beings, auditory/non-auditory effects of noise, Noise standards and limits, Noise standards in India	5						
6	Vibration-Systems with one degree of freedom, Free and forced vibration, torsional vibration. Analysis by Rayleigh's method. Stodola method and iterative method of Holtzer. Analysis and application of forced vibration in steady state as well as transient state, self excited vibrations. Free vibrations of systems with several degrees of freedom. Free vibration of elastic bodies, Free longitudinal vibrations of Prismatic bar, orthogonality principle. vibration absorbers, case studies, vibration measurement and instrumentation	10						

Text Books:

1 Mechanical Vibrations	Singiresu S.Rao	Pearson Education.
2 Noise and Vibration Control	Munjal M L	World Scientific Publishers

References:

1	Fundamentals of Sound and Vibrations	Frank	Fahy	and	David	CRC Press
		Thomp	son			
2	Elements of Vibration Analysis	Leonar	d Meiro	ovitch		Tata McGrmv-
						Hill, New York.

Course Code:	Quality Engineering
MEN14255	Quanty Engineering

Credits: 3-0-0:3

Pre-requisites: Measurement and Metrology

COURSE OUTCOME:

S.N.	Outcomes
CO1	Understand control charts for the analysis of observational data. Apply control charts for the
	real world industry or service organisations problems
CO2	Understand types of sampling plan and apply different sampling plans during the inspection of lots of products.
CO3	Understand and apply the concept of Reliability, Availability and Maintainability
CO4	Apply Quality Design concept for Parameter and Tolerance Design

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO2	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO4	3	3	3	3	3	3	2	3	3	2	2	3	3	3

Unit	Details	No. of					
		hours					
1	Introduction-Concept of quality, basic statistical concepts, Control of accuracy	4					
	and precision, Process capability, standardization and interchangeability;						
	Statistical Quality Control: Objectives, Applications, organization, cost aspects,						
	theory of statistical tolerance.						
2	Control Charts- General theory of Control Charts, Shewhart control chart for	12					
	process control; Control Charts for variables such as X, R Control Charts for						
	charts for attributes such as c and p charts; Acceptance control chart; Cumulative						
	Sum Control Charts; Process Capability, Cause- Effect and Pareto diagrams.						
3	Acceptance Sampling- Multiple and Sequential Sampling Plans, Multi-	8					
	Continuous Sampling Plan, Acceptance Sampling by Variables, Advantages						
	limitations. Sampling plans using different Criteria. Comparison of various types						
	of sampling plans. Rectifying Inspection						
4	Reliability, Availability and Maintainability- Introduction to reliability,	6					
	Bathtub curve, Series and Parallel system; MTBF, Evaluation of Availability and						
	Maintainability.						
5	Quality Design - Design of experiment concept, System, Parameter and						
	Tolerance Design; Concept of Robust Design, Taguchi Concept - Orthogonal						
	Arrays and S/N ratio.						

Text/Reference Books:

- 1. Statistical Quality Control; Eugene L. Grant, Richard S. Leavenworth, Tata Mc Graw Hill, 2000
- 2. Introduction to quality control, Jamieson A, Reston, 2004.

Reference Books:

- Statistical Quality control; A Modern Introduction 6th Edition, Douglas C. Montgomery, 2010
- 2. Juran's Quality Planning and Analysis, by Frank. M.Gryna Jr. McGrawHill
- 3. Reliability Engineering, (3rdEdition), by LS Srinath, Affiliated East West Pvt Ltd, 1991.
- 4. Reliability Engineering, by E Bala Guruswamy, Tata McGraw Hill, 1994.
- 5. Quality Engineering Using Robust Design, Madhav S. Phadke, Pearson, 2008.
- Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design. Stapelberg Rudolph Frederick, ISBN: 9781848001749, 9781848001749.
- James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.

Course Code: MEN14252

Modelling and Simulation in Engineering

Credits: 3-0-0:3

Pre-requisites:

COURSE OUTCOME

S.N.	Outcomes
CO1	Understand the importance and principles of mathematical modeling.
CO2	Use advanced system modelling and analysis tools (concepts, methodologies, and abilities) in their
	research and professional careers.
CO3	Learn to abstract the real-world system into models.
CO4	Analytically derive the relationship of physical model.
CO5	Implementing the model using software.

CO-PO-PSO Mapping

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	-	1	1	-	1	2	1	2	2	3	3	3
CO2	3	3	2	2	1	-	-	1	2	2	2	3	3	3
CO3	3	2	3	3	2	1	1	-	2	1	1	3	3	3
CO4	3	3	3	1	2	1	1	2	2	2	1	3	3	3
CO5	3	3	3	2	3	2	1	2	3	2	2	3	3	3

Module	Content	No. Hr.
1	Introduction to Modelling and Simulation, Concept of System and environment,	4
	Continuous and discrete systems, Linear and non-linear systems, stochastic activities,	
	Static and Dynamic models, System analysis, System theory basics, its relation to	
	simulation.	
2	Physical Modelling: Principles of modelling, Basic Simulation modelling, Role of	4
	simulation in model evaluation and studies, Applications and advantages of	
	simulation.	
3	Mathematical Modelling: Mathematical Model, types of Mathematical models and	5
	properties, Procedure of modelling. Graphical method, Basic optimization, Basic	
	probability: Monte-Carlo simulation and applications.	
4	System Simulation: Techniques of simulation, Monte Carlo method, Experimental	5
	nature of simulation, Numerical computation techniques, Continuous system models,	
	Feedback systems, Computers in simulation studies, Simulation software packages.	
5	Probability Concepts in Simulation: Stochastic variables, Random numbers,	4
	Generation of Random numbers, Variance reduction techniques, Determination of	
	length of simulation runs.	
6	Simulation of Mechanical Systems: Building of Simulation models, Simulation of	4
	translational and rotational mechanical systems, Simulation of hydraulic systems.	
7	Simulation of Dynamic Systems with MATLAB- Simulink, Building a Simulink	6
	Model, Simulink of Linear systems, Algebraic loops, subsystems, Mat lab Simulink	
	interface. Concept of Graphical Programming and model building in Lab view.	
	Applications in Mechanical Engineering.	

Reference Books:

- 1. Simulation Modeling and Analysis by Averill Law
- 2. Simulation of Dynamic Systems with MATLAB and Simulink by Harold Klee
- 3. Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation by Jorge Angeles
- 4. System Dynamics: Modeling, Analysis, Simulation, Design by Ernest Doebelin,
- Mathematical Modeling and Simulation: Introduction for Scientists and Engineers by Kai Velten
- 6. Online Course on NPTEL https://nptel.ac.in/courses/112107214

Course Code:	Design and Analysis of Experiments	Credits:
MEN14251		3-0-0-3

Prerequisites: Nil.

Course Outcomes:

CO1	Able to understand the concepts of factors associated with experimental design.
CO2	Able to develop appropriate experimental design to run different experiments and analyze
	the data.
CO3	Apply the concepts of experimental design to develop empirical model and optimize the
	process parameters.
CO4	Design robust parameters using parametric design approach.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	-	-	2	-	-	-	-	-	-	-	2	3
CO2	1	2	3	3	2	-	-	-	-	-	-	2	3	3
CO3	2	3	3	3	2	-	-	-	2	-	-	-	3	3
CO4	1	-	3	2	2	-	-	-	-	-	-	1	2	3

Unit	Subject Details	No. Hrs						
1	Fundamentals of Experimental Design - Basic Principles, Purpose and Applications of Experimental Design, Perspective of Experimental approaches, Checklist for Design and Planning of Experiments, Steps involved in Experimentation.	6						
2	Simple Comparative Experiments- Statistical Techniques Concepts, Sampling, Distribution, Replication, Blocking and Randomization in Experiments, Comparison of multiple means and variances, Analysis of Variance (ANOVA), Error Terms.	8						
3	Factorial Designs- Definition and Principals of Factorial Design, Two-Factor and General Factorial Design, Standard Orthogonal Arrays &Interaction Tables, Modification and Selection of the Orthogonal Arrays, Analysis of Experimental Data.							
4	Response Surface Methodology- Basic Concept, Linear Model, Steepest Ascent, Second Order Model, Fitting Response Surface, Regression Models Fitting, Experiments with Computers.	8						
5	Taguchi's Parameter Design- Robust Parameter Design, Noise Factors and its Source, Objective Function & Signal to Noise (S/N) Ratios, Inner and Outer Array Design, Data Analysis and Case Study.	6						

Text Books:

1	Design and Analysis of Experiments	Douglas C.	John Wiley & Sons
2	Design and Analysis of Experiments	Angela M. Dean, Daniel Voss	SPRINGER (SIE)
3	Taguchi Techniques for Quality Engineering	P. J. Ross	McGraw-Hill
4	Quality Engineering using Robust Design	Madhav S. Phadke	Prentice Hall
Re	ferences:		
1	Experiments: Planning, Analysis, and Optimization	C. F. Jeff Wu, Michael S. Hamada	Wiley
2	Introduction to the Design and Analysis of Experiments	Geoffrey M. Clarke, Robert E. Kempson	Wiley
3	Product and Process Design for Quality, Economy and Reliability	Dukkipati, R V and Pradip K Ray	New Age International

Semester V

Course Code: Design of Machine Elements	Credits:
MEN15103	3-0-2:4

Prerequisites: Material Science and Engineering, Mechanics of Materials

Course Outcomes:

CO1	Students will be able to understand and apply the standards and design data book during a design problem.
CO2	Students will be able to identify the materials and its properties to make the machine component for a particular application
CO3	Students will be able to identify the critical sections of the components and understand its importance during design of a machine component.
CO4	Students will be able to evaluate and apply the concepts of factor of safety and theory of failures for design and creation of a particular machine component under static and cyclic loading conditions.
CO5	Students will be able to apply and analyze the acquired knowledge in design of different machine components such as joints, springs, shafts and gears.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	3	1	1	-	2	-	1	1	3	3	3
CO2	2	2	3	3	3	2	3	1	1	1	1	2	3	3
CO3	3	3	3	3	1	-	-	2	2	3	-	3	3	3
CO4	3	3	3	3	1	2	2	2	2	3	1	3	3	3
CO5	3	3	3	3	2	2	2	1	2	3	2	3	3	3

Unit	Details	No. Hrs
1	General Introduction: Standards in Design and Selection of Preferred Size, BIS and	5
	international system of material designation, Materials for design (such as Cast	
	Iron, Steels and Alloys, Non-ferrous metals, Plastics and Rubbers) and selection	
	methods: Selection strategy, selection procedure, case studies, The statistical	
	significance of material properties, Strength and cold work, Temperature effects.	
2	Design against Static and variable Load: Static strength, Stress concentration,	9
	Failuretheories for ductile and brittle materials, Selection of failure criteria,	
	Introduction to fracture mechanics, Factor of Safety and selection criteria, Notch	
	Sensitivity Factor, Design criteria for variable loads, Endurance Limit and fatigue	
	strength, Design for Finite and Infinite Life.	
3	Shafts and keys: Design of Shafts against Static and Fluctuating Load, D esign for	4
	Strength and Rigidity, Critical speeds for shafts, Design of Square and Flat Keys	
	and Splines.	
4	Power Screws and Joints: Form of Threads, Square Threads, Trapezoidal Threads,	9
	Stresses in Screw, Design of Screw Jack, Screwed Joints, Welded Joint and	
	Eccentric Loading of above Joints, Design for Fatigue Loading.	
5	Mechanical Springs: Materials for spring, Design against static and fatigue loading	7
	of helical compression and extension springs, Multi Leaf Springs and Spiral	
	Springs (self study)	
6	Spur Gears: Kinematics of gears, Conjugate Action, standard tooth systems for	8

spur gears, Profile shifted gears, Involutometry, gear cutting methods, Modes of gear failure, Spur gear tooth force analysis, Tooth bending stress – AGMA procedure, Bending fatigue strength – AGMA procedure, Buckingham equation for dynamic load on gears, Buckingham contact stress equation, Contact stress – AGMA procedure, Surface fatigue strength – AGMA procedure, Gear materials. *Helical gears (self study)*

Text Books:

1 Mechanical Engineering Design (in SI Joseph E. Shigley and TATA McGraw Hill Units) Charles R. Mischke

References:

1	Machine	Design	An	Integrated	R. L. Norton			Pearson Prentice Hall			
	Approach										
2	Machine Component Design				Juvinall	R.	C.	and	John	Wiley,	5th
	i c			Marshek, K. M.,			Edition,				
3	Design of Machine Element				V. B. Bhandari			TATA McGraw Hill			
4	Design Dat	a sheets			Instructor	r					

Unit	Experiment	Practical
1	Assembly drawing of threaded Joints using AutoCAD/Solid works.	1
2	Assembly drawing of Cotter and Knuckle joint using AutoCAD/Solid works.	1
3	Assembly drawing of Couplings using AutoCAD/Solid works.	1
4	Assembly drawing of Tailstock using AutoCAD/Solid works.	1
5	Assembly drawing of Plummer block using AutoCAD/Solid works.	1
6	Assembly drawing of Rams bottom safety valve using AutoCAD/Solid works.	1
7	Assembly drawing of Cylinder relief valve using AutoCAD/Solid works.	1
8	Assembly drawing of Blow-off cock using AutoCAD/Solid works.	1
9	Assembly drawing of Tool Post using AutoCAD/Solid works.	1
10	Production drawing of any assembly using AutoCAD/Solid works.	1
11	Assembly drawing of Screw Jack using AutoCAD/Solid works	1

Text Books:

1 Machine Drawing		Ajit Singh T.	ATA McGraw Hill
Re	eferences:		
1	Machine Drawing	K L Narayana, P Kannaiah, K Ven	kata New Age International
		Reddy	Publication
2	Machine Drawing	R K Dhawan	S Chand Publication
3	Machine Drawing	N D Bhatt and V M Panchal	Charotar Publication
4	Production Drawing	K L Narayana, P Kannaiah, K Ven	kata New Age International
	-	Reddy	Publication

Course Code: MEN15102

Computer Aided Manufacturing

Credits: 3-0-2:4

Pre-requisites: NIL Course Outcomes:

CO1	Students will be able to understand the automation and its concepts
CO2	Students will be able understand the features of NC and CNC machines, understand the
	structure and tooling of CNC machine tools.
CO3	Students will be able to learn and write manual part programming, automated part
	programming for CNC turning and CNC machining center. Also Students will be able to
	understand the automatic part programming through CAD/CAM software.
CO4	Students will be able to understand Group Technology, FMS and CIM and can perform a
	case study/ term project

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2			2	2		1	1		2	3	3
CO2	2	2	2		2		2		1	1		2	3	3
CO3	2	2	2		3	1	1		1	1		2	3	3
CO4	2		2		2	1	1		1	1		2	3	3

Unit	Details	No. Hrs
1	Introduction - Automation need and types of automation, economics of automation. Basics of electro-mechanical automation technologies, Circuit design and applications of hydraulic, pneumatic, electropneumatic, electro-hydraulic and programmable logic control (PLC) systems.	6
2	NC technology – Basic components of NC system, NC co-ordinate systems, NC motion control systems, absolute versus incremental positioning, CNC – Features of CNC, MCU for CNC, CNC software. DNC – DNC (Direct NC), DNC (Distributed NC), Adaptive control, applications of NC, advantages and disadvantages of NC CNC Hardware basics: Structure of NC machine tools, Drivers - Actuation system, stepper motor and servo motor, Ball screw and nut with support bearing, open loop and close loop control system, encoders and transducers, linear motion system, engineering analysis of open and closed loop positioning systems. NC Tooling - Different tooling used in Milling and Turning centre. ATC (Automatic Tool Changer) in VMC and Turning centre, Work holding	8
3	Computer aided process planning, CNC programming - Manual Part <i>Programming</i> – G and M coding, Sub routines, scaling, mirror, Do loop features. Part programming for turning centres: Zero setting in CNC turning centres, Tool nose radius and tool position offsets in CNC turning centres, diameter programming, Canned (fixed) cycles, manual part programming for turning center. Part programming for milling and drilling: Zero setting in CNC machining	9

	centres, canned (fixed) cycles, manual part programming for milling and drilling. Tool diameter and length offset (compensation) features.	
4	Computer Aided Part Programming – APT (Automatically Programmed Tool) and Part Program generation through CAD/CAM software	4
5	Group technology, Flexible Manufacturing System (FMS) and Computer Integrated Manufacturing (CIM), Case study/ term project	6

Text Books:

1	Automation, Production Systems and	Mikell P. Groover	Prentice Hall India
2	Computer Integrated Manufacturing CAD/CAM/CIM Principles and Applications	P. N. Rao	McGraw Hill Education
Ref	erences:		
1	Numerical Control and Computer Aided Manufacturing	Kundra, Rao and Tiwari	ТМН
2	Computer Control of Manufacturing	Yoram Koren	McGraw-Hill Book
3	CNC Machining Technology - Vol. 1, 2 &	G. T. Smith	Springer-Verlag
4	Principal of Computer Integrated Manufacturing	S. Kant Vajpayee	PHI
5	Machinery's Handbook	Erik Oberg and Franklin D. Jones	Industrial Press, Inc.
6	Computer Aided Design and Manufacturing I		NPTEL
7	https://nptel.ac.in/courses/112102102 NPTEL Video Course : Computer Integrated Manufacturing https://www.digimat.in/nptel/courses/video		NPTEL
8	/112104289/L01.html NPTEL Video Course : Computer Aided Design and Manufacturing https://www.digimat.in/nptel/courses/video		NPTEL
9	/112102101/L01.html Computer numerical control CNC of machine tools and processes https://onlinecourses.nptel.ac.in/noc19_me		Swayam
10	46/preview Introduction to CAD, CAM, and Practical CNC Machining https://www.coursera.org/learn/introductio n-cad-cam-practical-cnc-machining		Coursera

Unit	Details						
1	Introduction of CNC, its features, required programming concepts and over view of CAM Lab	2					
2	Study of HMT CNC TRAINMASTER Lathe and Mach3 controller/ Denford ORAC CNC Lathe and Mach3 controller and study of CNC tooling for Lathe	2					
3	 Part programming using GM codes for lathe machine (2 programs) and verification on HMT T70/ Denford ORAC CNC Lathe through Mach3 controller Program1: Facing, Step Turning, Taper turning, Profile Turning, boring Program2: Threading, use of canned (fixed) cycles in lathe operations 	2					
4	Study of PMT CNC PND-320 turning centre and features of Fanuc O-T controller	2					
5	Study of various types of Automatic Tool changers (Fitted in PND-320, Denford ORAC lathe and Denford TRIAC Milling)	2					
6	Study of HMT CNC TRAINMASTER Vertical Machining Centre and Mach3 controller/ Denford TRAIC CNC milling machine and Mach3 controller and study of CNC tooling for machining center	2					
7	Part programming using GM codes for Drilling/ Milling (2 programs) and verification on software and HMT VMC200/ Denford Traic CNC milling machine through Mach3 controller Program1: Drilling, slot milling, pocket milling Program2: Profile milling (with tool radius compensation), use of canned (fixed) cycles in milling/drilling operations	2					
8	Automatic generation of G-M code from CAD/CAM software and a case study	2					

References:

1	Operating and instruction manual of HMT T70 train master	HMT
	lathe	
2	Operating and instruction manual of HMT train master vertical machining centre (VMC200)	HMT
3	Operating and instruction manual of PMT PND 320 CNC turning centre and Fanuc-OT programming manual	PMT Automatics, Pune
4	Mach3 programming manual for CNC Lathe and milling machine	Artsoft

Course Code: MEN15104

Manufacturing Science and Technology-II

Credits: 3-0-2:4

Prerequisites: Workshop and Manufacturing Processes

Course Outcomes

CO1	Student will be able to apply the concept of machining processes to develop a product with
	required shape, size, accuracy and quality in any manufacturing industry.
CO2	Student will be able to apply the concept of abrasive machining processes for finishing the job
	of various geometries to get the required finish, accuracy and quality of the product.
CO3	Students will be able to apply the concept of various welding and allied processes for joining
	parts in any manuafacturing industry.

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	1	1		1	1	1	2		1	3	2
COI	5	5	5	1	1	-	1	1	1	2	-	1	5	2
CO2	3	3	3	1	1	-	1	1	1	2	-	1	3	2
CO3	3	3	2	1	1	-	1	1	1	2	-	1	3	2

Course Contents

Unit	Details	Hrs
1	Machining-I: <i>Theory of Metal Cutting-</i> Mechanism of Chip Formation and Types of Chips; Orthogonal and Oblique cutting; Geometry of Orthogonal Cutting- Shear Strain and Shear Strain Rate; Mechanics and Thermodynamics of Orthogonal Cutting-Cutting Forces and Merchant Circle Diagram; Merchant Theory and Shear Angle; Shear Velocity and Chip Velocity; Energy and Power; Chip Tool Contact Length; Heat flux and Temperature in Shear and Friction plane; and Cutting fluid applications; <i>Technology of Cutting Tools</i> : Materials- Properties, Development, Composition and Applications; Geometry- Single Point Tool, Twist Drill, Milling Cutter and Broach, and Life- Failure, Wearing, and Evaluation Assessment Evaluation of Machinability	9
2	Machining-II: Single Point Cutting Tool based Machining Operations and Machine Tools-Turning and Related Operations; Lathe Machine: Centre Lathe and Capstan Lathe; Shaping and Related Operations; Reciprocating Machines: Shaper Machine and Planer Machine; <i>Multi Point Cutting Tool based Machining Operations and</i> <i>Machine Tools</i> -Drilling and Related Operations; Drilling Machine-Pillar Drilling Machine and Radial Drilling Machine; Milling and Other Operations; Milling Machine-Horizontal Milling Machine and Vertical Milling Machine; Broaching Operations and Broaching Machine; <i>Evaluation of Machinability</i> -Index Factor based Evaluation and Other Factor based Evaluation; <i>Analysis of Economics</i> -Minimum	15

	Production Cost based Analysis; Minimum Production Time based Analysis. Introduction to unconventional machining processes.	
3	Abrasive Machining- Need and Classifications; <i>Abrasive Grinding Operations</i> - Technology of Grinding Wheel-Composition, Specification, Selection and Life; Classifications of Grinding Operations; Surface Grinding Operations and Surface Grinder; Cylindrical Grinding Operations and Cylindrical Grinder; Analysis of Grinding Operation: Uncut Chip Size, MRR and Surface Finish; Forces and Temperature; <i>Abrasive Finishing Operations</i> -Honing and Lapping; Polishing and Buffing; Superfinishing; Abrasive Flow Finishing; Magnetic Abrasive Finishing	6
4	Joining Manufacturing: Need and Classifications of Joining Processes; Solid Welding-Diffusion, Friction, Explosive and Ultrasonic; Fusion Resistance Welding-Spot, Projection and Seam welding; Resistant Butt and Flash Butt welding; High Frequency Resistance and High Frequency Induction welding; Fusion Arc Welding-GTAW, PAW, SMAW, GMAW, SAW and ESW; Fusion Gas Welding: Oxy Acetylene welding; Fusion Thermite Welding; Fusion Beam Welding: LBW and EBW; Welding Defects and Inspection; Characteristics and applications of Brazing and Soldering	6

Text/Reference Books:

- 1. Groover's Principles of Modern Manufacturing: Materials, Processes and Systems by M. P. Groover, John Wiley and Sons, New Delhi (SI Edition)
- 2. Manufacturing Science by Ghosh and Mallik, East West Press Pvt. Ltd., New Delhi
- 3. Introduction to Machining Science by G.K. Lal, New Age International (P) Ltd, New Delhi

Unit	Details	Hrs
1	Preparation of Single Point Cutting Tool as per the given tool specification. Also write	2
	the process sheet for the same.	
2	To make a job as per drawing on the Capstan Lathe. Write the process sheet and draw	2
	the sketches of the machine tool and tools used	
3	To make a job as per drawing using Radial Drilling Machine. Write the process sheet	2
	and draw the sketches of the machine tools and tools used.	
4	Study of Indexing Mechanism for Gear Cutting and to cut gear on a gear blank using	2
	Indexing Mechanism on Horizontal Milling Machine. Write the process sheet and	
	draw the sketches of the machine tool and tools used.	
5	To make a slot as per the given drawing using Vertical Milling Machine. Write the	2
	process sheet and draw the sketches of the machine tool and tools used.	
6	Study of constructional details and working of Shaper, Planer and Slotter.	2
7	To make a job as per drawing using Cylindrical Grinding Machine. Write the process	2
	sheet and draw the Sketches of the machine tool and tools used.	
8	To make a job as per drawing using Surface Grinding Machine. Write the process	2
	sheet and draw the Sketches of the machine tool and tools used.	
9	Study of DIE SINKING ELECTRICAL DISCHARGE MACHINE and finding the	2
	effect of input process parameters on output performance parameters due to machining	
	of hardened steel	

Course Contents: Practicals

10	Study of TRAVELLING WIRE ELECTRICAL DISCHARGE MACHINE and	
	finding the effect of input process parameters on output performance parameters due	
	to machining of hardened steel	
11	Study of LASER BEAM MACHINE	2
12	Study of GMAW/GTAW WELDING MACHINE. Also draw the sketches of the tools	2
	used	

Course Outcomes

CO1	Students will be able to handle various metal cutting and grinding machines available in a
	production shop.
CO2	Students will be able to make a process plan for a given job drawing.
CO3	Students will be able to handle the GMAW/MIG welding available in a manufacturing
	industry

Course Articulation Matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	1	-	1	1	2	2	-	1	3	2
CO2	3	3	2	1	1	-	1	1	2	2	-	1	3	2
CO3	3	2	2	1	1	-	1	1	2	2	-	1	3	2

Text Books:

1. A Course in Workshop Technology, Vol. II (Machine Tools) by B.S. Raghuwanshi, Dhanpat Rai & Co. (P) Ltd.

Reference Books:

- 1. Introduction to Machining Science by G. K. Lal, New Age International Ltd., New Delhi
- 2. Manufacturing Science by Ghosh and Mallik, East West Press Pvt. Ltd., New Delhi

Course Code:	Automobile Engineering	Credits:
MEN15101	Automobile Engineering	3-0-0:3

Prerequisites: Engineering Thermodynamics, Engineering mechanics, Material Science, Strength of Materials.

Course Outcomes:

CO1	Students will able to understand the different types of auto vehicles and transmission system.						
CO2	Students will able to acquire knowledge on the steering system, suspension system, braking						
	system and wheels and tyre assembly.						
CO3	Student will able to evaluate various resistances and aerodynamics drag force on auto						
	vehicle body.						
CO4	Students will able to acquire knowledge on lubricating and cooling systems, Lighting system						
	in automobile and exhaust System.						

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	1	1	2	2	1	-	2	-	2	2	2
CO2	2	2	2	1	1	2	2	2	-	1	-	2	3	3
CO3	3	2	2	1	2	3	2	2	-	1	-	2	3	3
CO4	2	2	3	1	1	2	3	2	-	2	-	2	2	3

Unit	Details	No. Hrs
1	Introduction to Auto Vehicles: History of automobile, Classification of automobile, Types of chassis layout and type of drive, Types of chassis- fully forward, semi forward, Truck or bus chassis, two & three wheeler chassis layout.	4
2	Power Transmissions: (Manual, Semi-automatic and Fully Automatic) Clutches and its types, Gear Box and its types, Fluid Couplings, Torque convertors, Semi Automatic & Automatic Transmission, Continuous Variable Transmission (CVT), Telescopic joint and Propeller Shaft, Differential and its types, Axles and its types and Traction Control.	8
3	Steering and Suspension System Steering linkages, functions of steering mechanism, steering gear box types, wheel geometry, and power steering systems. Suspension geometry, Dependent and independent suspension systems, coil and leaf spring suspension, Shock Absorbers and Torsion Bar	8
4	Braking System and Wheels and Tyre Assembly: Mechanical Brakes, Hydraulic Brakes, constructional and operation of ABS, Pneumatic Brakes and Vacuum Brakes and hand brake. Wheel quality, assembly, types of wheels, wheel rims. Construction of tyres and tyre specifications.	8
5	Automotive Body and Road Safety: Vehicle body styles, Aerodynamic considerations in body profiling, resistance calculation. Road Safety, seat belt, air bags, bumper, anti lock brake system (ABS), wind shield, suspension sensors, traction control, mirrors, central locking and electric windows, speed control.	6
6	Miscellaneous: Lubricating system and cooling systems, Air-conditioning and Lighting system in automobile and exhaust System.	4

Text Books:

Scheme and Syllabi

1	The Motor Vehicle	Newton & Steeds	& Butterworth-Heinemann
2	Advanced Vehicle	Garrot Heinz Heisler	Butterworth-Heinemann
	Technology		
3	Automotive Engineering	David A Crolla.	Elsevier collection
Refer	rences:		
1	Tire and Vehicle Dynamics	Hans B Pacejka	Elsevier Ltd
2	Road Vehicle Dynamics	Rao V Dukkipati	Springer
3	Ground Vehicle Dynamics	Werner and Karl	Berlin Heidelberg
4	Theory of Ground Vehicles	Wong H.	McGraw Hill, Second edition

Semester-VI

Scheme and Syllabi

Refrigeration and Air Conditioning

Credits: 3-0-2:4

Prerequisites: Engineering Thermodynamics, Heat and mass Transfer

Course Outcomes:

CO1	Students will be able to identify basic components of a refrigeration systems
CO2	Students will be able to evaluate the performance of various refrigeration systems.
CO3	Students will be able to perform calculations for various psychrometric processes using the
	psychrometric charts
CO4	Students will be able to explain the functioning of the air conditioning system under
	different conditions
CO5	Students will be able to calculate load for air conditioning applications

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1	-	-	-	-	-	-	-	-	-	-	2	2	1
CO2	3	3	2	3	1	3	3	2	2	2	2	-	3	3
CO3	3	2	2	2	1	2	2	-	-	-	-	-	2	2
CO4	3	2	1	1	1	-	-	-	-	2	-	-	2	1
CO5	3	3	3	3	1	2	2	2	2	-	2	-	2	2

Unit	Details	No. Hrs
1	Refrigeration -Introduction, methods of refrigeration, Applications, Carnot refrigeration cycle, Unit of refrigeration capacity, Coefficient of Performance, Heat Pumps	5
2	Vapour compression system -Analysis of ideal vapour compression cycle, Use of T-s and p-h charts, Effect of pressure changes, subcooling of condensate and superheating of suction vapour on COP, Actual Vapour- Compression cycle, Cascade refrigeration systems	6
3	Vapour Absorption system -Comparison between absorption and compression systems, Water-Lithium Bromide and Ammonia –water absorption systems, Single-effect and double-effect systems.	4
4	Air refrigeration cycle:Brayton refrigeration cycle and its analysis, Aircraft refrigeration systems.	4
5	Refrigerants -Classification and nomenclature, Desirable properties of refrigerants, conventional and CFC free (ozone friendly) refrigerants.	4
6	Psychrometry -Psychrometric terms and definitions, Psychrometric processes, comfort chart.	6
7	Air-conditioning systems -Cooling and heating loads calculations, Apparatus Dew Point and By-pass factor of cooling coils, window, split and central air-conditioning systems.	6

Text Books:

1	Refrigeration	and	Air-	C.P.Arora	Tata McGraw-Hill
2	conditioning Refrigeration conditioning	and	Air-	Manohar Prasad	New Age International

References:

1	Refrigeration and air conditioning,	W. F.Stoecker, and J. W. Jones	Mc GrawHill Book Co, New York.
2	Principles of refrigeration	Roy J Dossat	Prentice Hall
3	Refrigerant Tables and Charts	Banwait&Laroiya	Birla Publications.

Module	Name of Experiment	Duration
1	Study and Performance analysis of vapour compression refrigeration system	2
2	Study and Performance analysis of Triple fluid vapour absorption system	2
3	Study and Performance analysis of vortex tube refrigerator R434	2
4	Study and Performance analysis of heat pump trainer	2
5	Study and Performance analysis of different types of pyschrometers	2
6	Study and Performance analysis of air-conditioning unit.	2
7	Study and performance analysis of Ice-plant.	2
8	Evacuation and charging of a vapour compression refrigeration system	2
9	Analysis of vapour compression cycle using cool pack software	2
10	Analysis of vapour compression cycle using open-source coding platform	2
11	Load calculation of building and energy analysis using E-Quest software	2
	package	

Text Books:

1	Refrigeration conditioning	efrigeration and Air- onditioning		C.P.Arora	Tata McGraw-Hill	
2	Refrigeration and Air- conditioning		Manohar Prasad	New Age International		
Refer	ences:					
1	Refrigeration and air conditioning,			W. F.Stoecker, and J. W. Jones	Mc GrawHill Book Co, New York.	
2	Principles of refrigeration			Roy J Dossat	Prentice Hall	
3	Refrigerant Ta Charts	bles and	1	Banwait&Laroiya	Birla Publications.	

Scheme and Syllabi

Course Code:	Machanical System Design	Credits:
MEN16101	Wiechanical System Design	3-0-0:3

Prerequisites: Mechanics of Materials, Design of Machine Elements

Course Outcomes:

CO1	Students will be able to apply knowledge of basic science and engineering fundamentals for
	design of a more complex and diverse engineering system utilizing a systems approach.
CO2	Students will have ability to communicate within the design group effectively to identify the
	requirements of a design problem and will be able to formulate and give a tangible solution.
CO3	Students will be able to evaluate the concepts and designs developed during different phases
	of the design.
CO4	Students will be able to test the design by mathematical tools, prototype testing and verify
	the results.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	1	1	2	3	1	3	3	3	3
CO2	3	2	2	1	1	1	1	1	3	3	2	3	3	3
CO3	3	3	3	2	3	2	1	1	3	3	2	3	3	3
CO4	3	3	3	3	3	1	1	2	3	3	1	3	3	3

Units	Title	Lectures
1	Design Process: Types of design work, The role of the designer, creativity, The	7
	morphology of the design process; Systems Approach: Fundamentals of	
	Technical System: System, plant, components, equipment, machines, and	
	assemblies; The Application of Systems concepts in Engineering Design,	
	Identification of Engineering functions and engineering characteristics,	
	Conversion of energy, material and signals, Functional relationship, Working	
	interrelationship: physical effects, Product and function decomposition diagram,	
	Engineering Activity Matrix, A case study.	
2	Problem Definition and Need Identification, Identifying Customer Needs,	7
	System interface, importance and types of requirements, Types of Customer	
	requirements, Functional requirements and company requirements; Gathering	
	Information on Existing Products, Establishing the Engineering Characteristics,	
	Quality Function Deployment, Product Design Specification, Team Behaviour	
	and Tools, Gathering Information, Types of Design Information, Sources of	
	Design Information	-
3.	Functional analysis and variants: Creative thinking, Functions, classification	7
	of functions, functional variants, relocating functions, subdividing functions,	
	Combining of eliminating functions, Study of system equation, Physical effects –	
	effects relating physical quantities. Solutions for basis functions, Constrained	
	concept variants from sub solutions, case study: Liquid pressure variator:	
	Concept variants from sub-solutions, case study. Equily pressure variator,	
	Desigion Making and Concent Selection: Introduction Desigion Making	4
4.	Persion Making and Concept Selection: Introduction, Decision Making -	4
	Evaluation processos Using models in evaluation Duch Concert colection	
	Evaluation processes, Using models in evaluation, Fugn Concept selection	
	process, weighted Decision Matrix, Analytic metaleny flocess (AHP)	

5.	Configuration – Product architecture and Part design, Embodiment/Parametric –	5
	Steps in parametric design, Belt and Pulley example and Detail design,	
	Manufacturing considerations in design, guidelines in designing for assembly	
6	Mathematical Modelling Concepts: Models – Iconic, Analog, symbolic and a	5
	proof-of-concept, prototype; Choosing appropriate model, Aids to mathematical	
	modelling - Dimensional analysis, scale model, A Process for Mathematical	
	Model Building, Geometric modelling, Finite Element Method, Case Study	

Text Book:

- 1. G.E.Dieter, "Engineering Design: A Materials and Processing Approach" McGraw Hill.
- Hundal, M. S., "Systematic Mechanical Designing: A Cost and Management Perspective", New York, ASME Press, 1997.

References:

- 1. J.R.Dixon, "Design Engineering and design for manufacture" Field Stone Pub.
- 2. David G.Ullman, "The Mechanical Design Process", McGraw Hill
- 3. R.J.Eggert, "Engineering Design", Pearson/Prentice Hall.
- 4. Martin S Ray, "Elements of Engineering Design", Prentice Hall
- 5. Principles of Design: Nam P Suh, McGraw Hill 1999
- 6. Total Design: Stuart Pugh, Pearson Education

Robotics and Mechatronics

Credits: 3-0-2:4

Prerequisites: Basic knowledge of Kinematics, instrumentation and process Control

Course Outcomes:

CO1	Students will understand and identify the concepts of Robotics and automation systems.
	Basic components robot manipulator and measurement systems and their working
	principles.
CO2	Students will be able to Identify and Classify the types of industrial robots based on DOF,
	control system and Study/analyse the mechanical and electro-mechanical systems.
CO3	Students will be able to analyse and evaluate the motion analysis based on Robot kinematics
	& Identify, Classify and evaluate the design data for commonly used sensors and actuators.
CO4	Students will be able to Apply and analyse the acquired knowledge for trajectory planning
	like pick and place operation and able to prepare the PLC programming to control a
	mechatronics system and analyse it's functionality. To get familiar with the latest
	improvements in robotics technology.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	1	1	1	2	2	1	1	3	3
CO2	3	1	2	1	2	1	1	1	2	2	1	1	3	2
CO3	3	2	3	2	3	1	1	1	2	2	1	1	2	2
CO4	3	3	3	3	3	1	1	1	2	2	1	2	3	3

Units	Details	Nos. of
		Hrs
1	Introduction: Automation and Robotics, An over view of Robotics – present	06
	and future applications – classification by coordinate system and control	
	system, Fundamentals of Mechatronics, Conventional vs. Mechatronics	
	Systems. Need of Mechatronics systems in Engineering. Classification of	
	Mechatronics etc.	
2	Components of the Industrial Robotics: Function line diagram representation	06
	of robot arms, common types of arms. Components, Architecture, number of	
	degrees of freedom – Requirements and challenges of end effectors,	
	determination of the end effectors, comparison of Electric, Hydraulic and	
	Pneumatic types of locomotion devices.	
3	Introduction, General Description of Robot Manipulator, Mathematical	06
	Preliminaries on Vectors & Matrices, Homogenous Representation of Objects,	
	Robotic Manipulator Joint Co-Ordinate System. Euler Angle & Euler	
	Transformations, Roll-Pitch-Yaw(RPY) Transformation, Relative	
	Transformation, Direct & Inverse Kinematics' Solution, D H Representation	
	& Displacement Matrices for Standard Configurations, Geometrical Approach	
	to Inverse Kinematics etc.	
4	Components of Mechatronic systems and their Modeling. Mechatronics model	04
	of different mechanical systems, their Block diagram with examples.	

5	Introduction to Actuators and actuating devices with special reference to	06
	Robotics and Mechatronics, their working principles etc. stepper motor,	
	pneumatics and hydraulic actuators etc.	
6	Introduction, Various Teaching Methods, Typical Programming Examples	06
	such as Palletizing, Loading a Machine – Robot programming, languages and	
	softwares. Advance Mechatronics systems such as PLCs/SCADA,	
	Microcontroller based control of Electric Motors, Case studies etc.	

Text Books:

- 1. Saeed B. Niku, Introduction to Robotics, Analysis, Systems, Applications, PHI Publications.
- 2. Mechatronics by W. Bolton, Pearson Publication McGraw Hill.

References

- 1. FU K S, Gonzalez RC, Lee CSG; Robotics Control, sensing, TMH Publ.
- 2. S R Dev, Robotics Technology and Flexible Automation, Tata McGraw Hill
- 3. Saha S; Introduction to Robotics; TMH Publications
- 4. Mechatronics by Dan Necsulescu, Pearson Publication
- 5. Mechatronics by David G. Alciatore and Michael B. Histand, TMH Edition.

COURSERA Link: <u>https://www.coursera.org/certificates/robotics-mechatronics-</u> <u>iitguwahati#courses</u>

Module	Name of Experiment	Duration
1	INTRODUCTION TO DEGREES OF FREEDOM AND	02
	CLASSIFICATION OF ROBOTS	
	Objective:	
	 To study classification of robots based on workspace. 	
	 To study degrees of freedom of robots. 	
	 To study various robot joints. 	
2	Study of different components and working of MOTOMAN HP3 NX100	02
	6-DOF robot	
	Objective:	
	To study the	
	 Forward kinematics of Robots 	
	 Inverse kinematics of robots 	
3	Programming and demonstration of MOTOMAN 6-axis robot using	
	Teach pendent.	
4	Understanding VREP SOFTWARE and its features/Offline Robot	02
	Programming for Pick and place operation.	
5	STUDY AND OPERATION OF SENSOR KIT (USING QNET	02
	MECHATRONICS SENSOR TRAINER).	
	Objective:	
	 Operation of Potentiometer sensor for measurement of 	
	Displacement etc.	
	 Operation of Piezo-electric type sensor for measurement of 	
	Pressure/Force.	
	 Operation Strain gauge type sensor for measurement of Strain. 	
6	RUN THE DC/STEPPER MOTOR AT DIFFERENT OPERATING	02
	CONDITION:	

	Objective	
	<u>Objective:</u>	
	 To run a stepper motor at different speed and different 	
	direction like Forward and Reverse Direction and calculate	
	the rpm.	
7	ELECTRO PNEUMATIC CIRCUIT TO CONTROL THE SINGLE	02
	ACTING CYLINDER:	
	Objective:	
	 To construct a pneumatic circuit to control the single 	
	acting cylinder electrically using push button switch.	
8	OPERATION OF HYDRAULIC ACTUATORS IN DIFFERENT	02
	OPERATING CONDITIONS.	
	Objective:	
	• To study the various hydraulic components used in hydraulic	
	systems and to understand the working of them.	
	 To actuate a single and double acting cylinders using pilot valves 	
	and measure the pressure.	
9	AUTOMATIC DOOR OPENING AND CLOSING:	02
	Objective:	
	 To simulate a automatic door opening and closing system using 	
	PLC	

Text Books:

- 1. Saeed B. Niku, Introduction to Robotics, Analysis, Systems, Applications, PHI Publications.
- 2. Mechatronics by W. Bolton, Pearson Publication McGraw Hill.

References

- 1. FU K S, Gonzalez RC, Lee CSG; Robotics -Control, sensing, TMH Publ.
- 2. S R Dev, Robotics Technology and Flexible Automation, Tata McGraw Hill
- 3. Saha S; Introduction to Robotics; TMH Publications
- 4. Mechatronics by Dan Necsulescu, Pearson Publication
- 5. Mechatronics by David G. Alciatore and Michael B. Histand, TMH Edition.
- 6. Instruction and operating manual of Motoman HP3 NX100 6-axis robot by Yaskawa

Core Elective Courses- 2, 3, 4 and 5 (V&VI Semester)

C	ourse	Code:	
MEN1	5267/N	AEN1	6267

Finite Element Method in Engineering

Credits: 3-0-0:3

Prerequisites: NIL **Course Outcomes:**

CO1	Students will be able to understand the fundamental aspects of finite element method.
CO2	Students will be able to formulate the 1d engineering problems and solve them by hand
	calculations and FE software.
CO3	Students will be able to formulate the 2d engineering problems and solve them by hand
	calculations and FE software.
CO4	Students will be able to formulate the 3d engineering problems and solve them by
	programming and FE software.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	1	1	1			2	1		2	3	3
CO2	2	2	3	2	3	1			2	2		2	3	3
CO3	2	2	3	2	3	1			2	2		2	3	3
CO4	2	2	3	2	3	1			2	2		2	3	3

Unit	Details	No. Hrs
1	Introduction: Basic concept, Historical background, and General applications of	1
	finite element method.	
2	Approaches of FEM: Discrete, Variational and Weighted Residual.	5
3	Direct Problems: 1-D Rod and Heat conduction, Truss Systems, Solution and its	6
	post processing by hand calculations and FE software	
4	1-D Thermal and Beam Bending Problems: Formulation using Galerkin and	6
	Rayleigh-Ritz approaches, Derivation of elemental equations and their assembly,	
	Solution and its post process by hand calculations and FE software.	
5	2-D Thermal and Plane stress, Plane strain and Axi-symmetric Problems-	8
	Formulation using Galerkin and Rayleigh-Ritz approaches, Derivation of elemental	
	equations and their assembly, Solution and its post processing by hand calculations,	
	and FE software.	
6	3-D Thermal and Stress Problems- Formulation using Galerkin and Rayleigh-	6
	Ritz approaches, Derivation of elemental equations and their assembly, Solution	
	and its post processing by programming and FE software.	

Textbooks:

1 A first course in the finite Daryl L. Logan

Ltd

PHI

element method

2 Textbook of Finite Element P Seshu Analysis

References:

1.	Introduction to Finite Elements in Engineering	<u>Tirupathi</u>	Pearson
		Chandrupatla, Ashok	
		<u>Belegundu</u>	
2.	The Finite Element Method for Engineers	Kenneth H. Huebner,	Wiley India Pvt.
		Donald L. Dewhirst,	Ltd
		Doughlas E. Smith	
3.	Fundamentals of Finite Element Analysis	David V. Hutton	Tata McGraw
			Hill Education
4.	The Finite Element Method in Engineering	S. S. Rao	Butterworth-
			Heinemann
5.	Finite Element Procedure	K. J. Bathe	PHI
6.	Concept and Applications of Finite Element Analysis	Robert D. Cook,	John Wiley
		David S. Malkus,	
		Michael E. Plesha,	
		Robert J. Witt	

Course Code:	Operations Research	Credits:
MEN15275/MEN16275		3-0-0:3

Pre-requisites: NIL COURSE OUTCOME

CO	Outcomes
CO1	Understand the characteristics of different types of decision-making environments.
CO2	Identification and formulation of the problem in real life
CO3	Understand the appropriate decision making approaches and tools to be used in each type.
CO4	Formulate and solve LPP, Transportation, Assignment, and Scheduling Models with real life
	problems
CO5	Design new simple models, like: CPM, PERT to improve decision making.

						Pı	ogram	Outco	mes					
CO		1	n	n	n	n	n	n	1	T	1	1		
00	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	2	3	2	2	2	2	3	3	3	2	2
CO2	3	3	3	3	3	2	2	2	2	2	3	3	2	2
CO3	3	3	3	3	3	2	2	2	2	2	3	3	3	3
CO4	3	2	3	3	3	2	2	2	2	2	3	3	3	3
CO5	3	3	3	3	3	2	2	2	2	2	3	3	3	3

Unit	Content	Lectures
1	BASICS OF OR - Development of Operations Research, Definition of	6
	Operations Research, Characteristics of Operations Research, Scope of	
	Operations Research, Operations Research and Decision-Making, Scope of	
	Operations Research in Management, Scope of OR in Financial Management	
	,Application of various OR Techniques, Objective of Operations Research	
	INVENTORY CONTROL - Necessity for Maintaining Inventory, Inventory	
	Costs, Inventory Control Problem, Classification of Fixed Order Quality	
	Inventory Models, Inventory Models with Deterministic Demand	
2	LINEAR PROGRAMMING - Introduction, Formulation of Linear	12
	Programming problems, Graphical Method of Solution, The General Linear	
	Programming problem, Canonical and Standard Forms of Linear Programming	
	Problem, Theory of Simplex Method, Analytical Method or Trial and Error	
	Method, The Simplex Method (Technique or Algorithm), Artificial Variables	
	Techniques, The Big-M Method, The Two-Phase Method	
3	TRANSPORTATION MODELS-Introduction to the Model, Definition of the	12
	Transportation Model, Matrix Terminology, Formulation and solution of	
	Transportation Models, Variants in Transportation Problems, Additional	
	Problems.	
	ASSIGNMENT MODEL-Definition of the Assignment Model, Mathematical	
	Representation of the Assignment Model, Comparison with the Assignment	
	Model, The Hungarian Method for Solution of the Assignment Problems,	

	Formulation and solution of the Assignment Models, Variations of the Assignment Problem, The Travelling Salesman Problem. SEQUENCING MODELS -Sequencing problems, Assumptions in Sequencing Problems, Processing n Jobs through one Machine, Processing n Jobs through two Machines, Processing n Jobs through three Machines, Processing two Jobs through m Machines, Processing n Jobs through m Machines, Problems related to Sequencing(Routing Problems in Networks),Minimal Path Problem.	
4	GAME THEORY - Game theory, Formulate two-person zero-sum game, Solve a simple game, Solve mixed strategy games using graphical method and LP ,Describe reduction using dominated strategy, Introduce saddle point condition, Formulation of Two-person Zero-sum game, Solution of simple games, Mixed strategy games, Solving using Graphical Method, Solving Using LP, Reduction using Dominated Strategies, Saddle point Condition, Examples.	6
5	NETWORK ANALYSIS - Network models, Identify the situation in which minimum spanning tree algorithm can be used, Identify the situation in which shortest path algorithm can be used, Identify the situation in which maximal flow algorithm can be used, Draw network diagram, Analyze the network, Identify critical path, CPM. Apply PERT using Optimistic, Most likely, pessimistic times of activities, Find the probability of completing the project, Minimal spanning tree problem, Shortest route problem, Maximal flow problem	6

Text Books:

- 1. Operations Research An Introduction by H.Taha
- 2. Operations Research by Heera and Gupta

REFERENCES

- 1. Introduction to Operations Research by Hillier & Lieberman
- 2. Operations Research by V K Kapur
- 3. Operations Research by S D Sharma

Course Code:
MEN15254/MEN16254

Automatic Control

Credits: 3-0-0:3

Prerequisites: Mathematics – I and Mathematics – II

Course Outcomes:

CO1	Students will be able to apply the modelling fundamentals to obtain state-space and transfer
	function models of linear control systems.
CO2	Students will be able to compute the time response of linear control systems.
CO3	Students will be able to compute the frequency response of linear control systems.
CO4	Students will be able to analyse the linear control systems to identify the characteristics of
	the systems.
CO5	Students will be able to design the linear controller based on the desired characteristics of the
	systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	3	-	-	2	2	2	1	2	3	3
CO2	3	3	3	2	3	-	-	2	2	2	1	2	3	3
CO3	3	3	3	2	3	-	-	2	2	2	1	2	3	3
CO4	3	3	3	2	3	-	-	2	2	2	1	2	3	3
CO5	3	3	3	3	3	1	-	2	2	3	1	3	3	3

Unit	Details	No. Hrs
1	Introduction to control, open-loop control, feedback control, Modelling of	8
	mechanical, electrical and hydraulic dynamic systems, Properties of Laplace	
	transform, Transfer function modelling, Representation of multiple subsystems:	
	Block diagrams, Signal flow graphs, State-space representation, State-space model	
	solution.	
2	Time response of first order system, time-constant, Time response of second order	7
	systems, Pole locations and Time Response, Transient Response Analysis, Stability	
	analysis using the Routh-Hurwitz test, Relative Stability, Steady state error, PID	
	Controller Design.	
3	Root locus analysis: Sketching a root locus, Selection of gain from the root locus,	6
	Design of Lead and Lag Compensators using the root locus.	
4	Frequency response analysis: Bode plot, Nyquist plot, Stability Analysis: Nyquist	8
	theorem, Stability Margins, Closed loop frequency response, Design of Lead and	
	Lag Compensators using Frequency Domain Techniques.	
5	Linear discrete time systems: z-transform, mathematical modelling, stability	6
	analysis, steady-state error, dynamic performance of discrete time systems	

Text Books:

1	Automatic Control Systems	B C Kuo and F	Wiley
		Golnaraghi	
2	Modern Control Engineering	K Ogata 1	Pearson Education
3	Discrete-Time Control Systems	K Ogata	Pearson Education
Refer	ences:	-	
1	Control Systems: Principles	M Gopal	Tata McGraw-
_	and Design		Hill
2	Automatic Control	F H Raven	McGraw-Hill
	Engineering		
3	Control Systems Engineering	I J Nagrath and M Gopal	New Age
			International
4	Feedback Control of Dynamic	G F Franklin, J D Powell and A	Prentice-Hall
	Systems	Emami-Naeini	
5	Automatic Control	https://nptel.ac.in/courses/112107240	

6 Control engineering https://nptel.ac.in/courses/108106098

Industrial Safety and Reliability Engineering

Prerequisites: Industrial application and safety Engineering Course Outcomes:

CO1	Students will be able to understand basic knowledge in failure rate and time between
	failures.
CO2	Students will be able to formulate the root cause analysis. Explain the different failure
	distribution and probability plotting techniques.
CO3	Students will be able to analyze and determine the effect of the lifecycle cost and allocation.
	Express the RBD approach and Fault Tree Analysis.
CO4	Students will be able to predict knowledge on risk assessment techniques. Measure
	reliability allocations and non-parametric methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2	1	1	2	1	3	2	3	2	3	3	2
CO2	3	2	2	1	1	3	2	2	2	3	3	3	2	2
CO3	3	3	2	2	3	2	1	1	3	2	2	2	3	3
CO4	3	3	3	2	3	3	1	2	2	3	3	3	2	3

Unit	Details	No. Hrs
1	Introduction, key concepts, terminologies, and safety quantification, safety by design. Hazard identification techniques (e.g., HAZOP, FMEA, etc.). Fault tree and event tree analysis (qualitative & quantitative). Bow-tie and quantitative risk assessment (QRA).	5
2	Safety function deployment, Safety vs reliability – quantification of basic events (repair to failure, repair-failure-repair, and combined processes) Safety vs reliability – quantification of basic events (contd.), Systems safety quantification (e.g., truth tables, structure functions, minimal cut sets) Human error analysis and safety.	7
3	Accident investigation and analysis, Application of virtual reality, OSHAS 18001 and OSHMS. Rules for combining probabilities of events, Definition of Reliability. Significance of the terms appearing in the definition. Probability distributions: Random variables, probability density and distribution functions.	6
4	Hazard rate, derivation of the reliability function in terms of the hazard rate. Failures: Causes of failures, types of failures (early failures, chance failures and wear-out failures). Bath tub curve. Preventive and corrective maintenance. Modes of failure. Measures of reliability: mean time to failure and mean time between failures.	5

-		
5	Classification of engineering systems: series, parallel and series-parallel systems- Expressions for the reliability of the basic configurations. Reliability evaluation of Non-series-parallel configurations: Decomposition, Path based and cutest based methods, Deduction of the Paths and cut sets from Event tree.	6
6	Approximate system Reliability analysis of Series systems, parallel systems with two and more than two components, Network reduction techniques. Minimal cutest/failure mode approach.	8

Text Books:

1	Probabilistic Risk Assessment For and Scientist	Engineering	Komamoto and Henley,IEE Press 1995				
2	Industrial Accident Prevention		Heirich et al. Mc Graw Hill,1980				
3	Techniques For safety management Approach	–A system	Petersen D,ASSE1998				
4	Reliability evaluation of Engineering syst	tems	Roy Billinton and Ronald N Allan, BS Publications				
5	Reliability Engineering		A. Elsayed, Prentice Hall Publications.				
feren	res•						

References:

1 Reliability Engineering: Theory and Practice Alessandro Birolini, Springer Publications.

2 An Introduction to Reliability and Maintainability Engineering Charles Ebeling, TMH Publications.

- 3 Reliability Engineering E. Balaguruswamy, TMH Publications.
- 4 Reliability Engineering Srinath L.S Affiliated East-West Press Pvt Ltd, New Delhi, 1998.
- 5 Reliability and Risk analysis Modarres Maral Dekker Inc. 1993.
- 6 The Reliability of Mechanical system. John Davidson published by the Institution of Mechanical Engineers, London, 1988.
- 7 Introductions to Reliability in Design Smith C.O McGraw Hill, London, 1976.

Course Code: MEN15271/MEN16271

Machine Tool Design

Credits: 3-0-0:3

Prerequisites: Workshop Technology

Course Outcomes:

S.N.	Outcomes
CO1	Students will be able to develop comprehensive knowledge and understanding of
	working principles of machine tools.
CO2	Students will be able to analyze the speed and feed regulation mechanisms of machine
	tool.
CO3	Students will be able to design machine structures and guide ways for better stability and
	precision.
CO4	Students will be able to design Spindles and Spindle Supports.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	1	1	1	2	1	-	-	-	1	2	1
CO2	2	3	3	2	2	2	3	2	-	-	-	2	2	2
CO3	2	3	3	2	2	2	3	1	-	-	-	2	3	2
CO4	2	3	3	2	2	2	3	2	-	-	-	2	3	3

Unit	Details	No. Hrs						
1	Introduction to Machine Tool Drives: Types and capabilities of machine tools,	4						
	Constructional and operational features, General Requirements of Machine Tool							
	Design, Working and Auxiliary Motions in Machine Tools, Kinematics of Machine							
	Tools, Motion Transmission, mechanical, hydraulic and electric drives.							
2	Regulation of Speed and Feed Rates: Speed and Feed Regulation, Layout of	10						
	Speed Change Gears, Saw Diagrams for Arithmetic, Geometric, Harmonic and							
	Logarithmic Progression of spindle speeds. Establishment of Gear Ratios, Layout							
	of the Intermediate Reduction Gears, Calculation of Transmission Ratios, Pulley							
	Diameter, Gear Wheel Diameters and Number of Teeth. Ray Diagram. Speed							
	Chart.							
3	Design of Machine Tool Structures: Functions of Machine Tool Structures and	6						
	Their Requirements, Design criteria for Machine Tool Structures, Materials of							
	Machine Tool Structures, Static and Dynamic Stiffness, Profiles of Machine Tool							
	Structures, Basic Design Procedure of Machine Tool Structures, Design of Beds,							
	Columns, saddles, carriages, Bases and Tables.							
4	Design of Guide ways and Power Screws: Functions and Types of Guide ways,	6						
	Design of Slide ways, clearance adjustment in slide ways. Design of Anti-Friction							
	Guide ways, Combination Guide ways and Aerostatic guide ways. Design of Power							
	Screws and Recirculating ball screws.							
5	Design of Spindles and Spindle Supports: Functions of Spindles and	5						
	Requirements, Effect of Machine Tool Compliance on Machining Accuracy,							
	Design of Spindles.							
6	Dynamics of Machine Tools: Machine Tool Elastic System, Static and Dynamic	5						
	Stiffness, Effects of vibration, stability analysis. Methods to reduce instability in							

machine tool like dampers, vibration absorbers, Machine Tool Chatter, Thermal loads

Text Books:

1 2	Principles of Machine Tools Design of Machine Tools	G C Sen, A Bhattacha S.K. Basu, D K Pal	rya New Cer Oxford a	New Central Book Agency Oxford and IBH Publishing		
Refe	rences:					
1	Manufacturing automation mechanics, machine tool vi	: metal cutting Y brations, and CNC	usuf Altintas	Cambridge University Press		

 design
 Machine Tool Design Handbook
 Central Machine Tool Institute, McGraw-Hill
 Machine Tool Design and Numerical Control N K Mehta

Micro and Nano Manufacturing

Credits: 3-0-0:3

Prerequisites: Workshop Technology, Manufacturing science and technology

Course Outcomes:

S.N.	Outcomes								
CO1	Students will be able to understand various traditional/non- traditional micro and nano								
	machining methods.								
CO2	Students will be able to understand various Non-conventional micro-nano manufacturing and								
	finishing approaches.								
CO3	Students will be able to understand Micro and Nanofabrication Techniques and other								
	processing routes in Micro andnano machining/manufacturing.								
CO4	Students will be able to understand various nano finishing techniques used in industries.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	1	3	1	2	-	2	-	2	1	3	1
CO2	2	3	3	2	3	1	3	-	3	-	2	1	2	2
CO3	2	3	3	2	3	1	3	-	3	-	2	2	3	2
CO4	2	3	3	2	3	2	3	-	2	-	2	2	3	2

Unit	Details	No. Hrs
-	Overview of Micro and Nano Manufacturing Introduction Micro-Products And	6
1	Design Considerations For Manufacturing Material Factors Considerations On	U
	Manufacturing Methods, Manufacturing Methods And Processes, Ductile Mode	
	Cutting of Brittle Materials. Diamond Tools in Micromachining.	
	Introduction to Conventional micro machining Processes. Micro-turning, Micro-	6
2	drilling, Micro-milling, Product quality in micromachining; Ultra-precision	-
	Processes- Micro and nano grinding, Nano grinding tools	
	Non-traditional Micro Machining- Ultra Sonic Micro Machining, Chemical and	6
2	Electro Chemical Micro Machining, Electric Discharge Micro Machining, Electron	
3	Beam Micro Machining, Laser Beam Micro Machining, Ion Beam Micro	
	Machining.	
	Micro and Nano Finishing Processes, Need for Nano finishing, Magnetic abrasive	6
4	Finishing, Magnet or heological Finish, Elastic, Emission Finishing, Magnetic	
	Float Polishing, Ion Beam finishing.	
	Process principles of Micro Forming and Welding, Micro Blanking and Punching,	6
5	Micro Embossing, Micro Extrusion, LASER Micro Welding, Electron Beam Micro	
	Welding	
	Applications of Nano and Micromachining in Industry Typical machining	6
6	methods- Applications in optical manufacturing, Semiconductor and electronics	
	related applications; Introduction to lithography, RIE, DRIE.	

Text Books:

1	Nano and Micromachining	J. Paulo Davim, Mark J.Jackson	John Wiley & Sons		
2	Micro and Nano-manufacturing	Mark. J. Jackson	Springer		
Refe	erences:				
1	Micro-manufacturing Processes	V.K.Jain	CRC Press		
2	Micro and Precision Manufacturing	Kapil Gupta	Springer		
3	Fundamentals of Microfabrication	Mark Madau	CRC Press		

Course Code: MEN15270/MEN16270

Industrial Tribology

Credits: 3-0-0:3

Prerequisites: NIL

Course Outcomes:

CO1	Students will be able to understand the fundamentals of friction, wear and lubrication with
	reference to industrial applications
CO2	Students will be able to relate friction and wear of engineering materials
CO3	Students will be able to evaluate friction and wear of various engineering materials with
	different surface contacts.
CO4	Students will be able to select lubricants and /or surface treatment method to reduce friction
	and wear

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2	3	1		2				2	2	3	3
CO2	3	1	2	3	1		2				2	2	3	3
CO3	3	3	3	2	2		2				2	3	3	3
CO4	3	3	3	2	3		3				2	3	3	3

Unit	t Details							
1	Definition and History of Tribology, Industrial Significance of Tribology Surface topography and surfaces in contact : Measurement of surface topography, Quantitative surface roughness, Topography of engineering surfaces, Contact between surfaces.	6						
2	Friction: Theories of friction, Friction of metals, ceramics, lamellar solids and polymers, Atomic scale friction, Micro scale friction.							
3	Wear: Types of wear mechanisms: sliding, erosion, abrasion, etc.; Wear testing methods; Estimation of wear rates; Types of particles present in wear debris.Wear of materials: metals, ceramics, polymers, composites.							
	Lubrication: Types of lubricants and their industrial uses, SAE classification, recycling, disposal of oils, properties of liquid and grease lubricants, lubricant additives, general properties and selection.	12						
4	Hydrostatic Lubrication: Principle, general requirement, types and applications. Hydrostatic Lubrication: Principle, Theories of lubrication, types and applications. Air/ Gas Lubricated bearings: Advantages and disadvantages, Hydrodynamic journal bearing, hydrodynamic thrust bearing, Analysis.							
	Effect of lubrication on friction and wear of metals, ceramics, polymers and composites							
5	Surface engineering in 110 Tribology : Surface treatment methods to reduce friction and wear	3						
6	Case studies on friction, wear and lubrication	3						

Text Books:

1 2 3	Engineering Tribology Friction, wear, Lubrication	G. W. Stachowiak and A. W. Batchelor Ludema, K.C.	Butterworth-Heinemann;4 th edition CRC Press, NY. Butterworth Heinemann: 2 nd		
3	Engineering Materials	Philip Shipway	edition		
]	References:				
1	Introduction to Tribology	Bharat Bhushan	John Wiley and Sons, New York, USA		
2	Surface Engineering for Corrosion and Wear	J. R. Davis and	ASM International, Materials		
	Resistance	Associates	Park, OH, USA, 2001		
3	The principles of Lubrication	Cameron A.	Longman, London		
4	Industrial Tribology: Tribosystems, Friction, Wear and Surface Engineering, Lubrication	Theo Mang, Kirsten Bobzin, Thorsten Bartels	Wiley-VCH		
5	Handbook of Hard Coatings: Deposition Technologies, Properties and Applications	Bunshah, R. F.,	Noyes Pub. Park Ridge, New Jersey, U. S. A./William Andrew Publishing, LLC, Norwich, New York, U.S.A.		
6	Standard Handbook of Lubrication Engineering	O' Conner and Royle	McGraw Hills		

Design of Robotic Systems

Credits: 3-0-0:3

Prerequisites: Basic knowledge of Kinematics, Dynamics and Mathematics I

Course Outcomes:

CO1	Students will understand the design concepts of robotics systems. Basic components robot
	manipulator and their working principles.
CO2	Students will be able to understand and identify the types of robot Gripper and evaluate the
	Gripper force analysis for specific applications.
CO3	Students will be able to Analyse and evaluate the motion analysis such as Robot kinematics,
	Motion dynamics, trajectory planning & Robot work envelopes etc. Identify and Classify the
	types of sensors and actuators.
CO4	Students will be able to Apply and analyse the acquired knowledge for designing the robot,
	Robot Programming methods for motion planning etc. To get familiar with the latest
	improvements in robotics technology.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	1	1	1	2	2		1	2	3
CO2	3	2	2	1	2	1	1	1	2	2		1	3	3
CO3	3	3	3	2	3	1	1	1	2	2		1	3	3
CO4	3	3	3	2	3	1	1	1	2	2	1	2	3	3

Units	Details	Nos. of
		Hrs
1	Introduction: Past, Present & Future; Robot Terminology; Applications,	4
	Components and Subsystems; Classification of Robot, End Effectors,	
	Different types of grippers and design concepts.	
2	Motion Analysis: Homogeneous transformations as applicable to rotation and	6
	translation – problems.	
3	Robot Kinematics: Specifications of matrices, D-H notation joint coordinates	8
	and world coordinates, Forward and inverse kinematics – problems.	
	Differential transformation and manipulators, Jacobians – problems.	
4	Dynamics: Lagrange – Euler and Newton – Euler formations – Problems.	6
5	Trajectory planning and avoidance of obstacles, path planning, Skew motion,	8
	joint integrated motion, and straight line motion – Robot programming,	
	languages and software packages. Robot actuators and Feedback components:	
	Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors.	
	Feedback components: position sensors – potentiometers, resolvers, encoders	
	– Velocity sensors.	

Text Books:

Scheme and Syllabi

1. FU K S, Gonzalez RC, Lee CSG; Robotics –Control, sensing, TMH Publ.

References

- 1. An Introduction to Robot Technology, / P. Coiffet and M. Chaironze / Kogam Page Ltd. 1983 London.
- 2. Robotic Engineering / Richard D. Klafter, Prentice Hall
- 3. Robot Analysis and Intelligence / Asada and Slow time / Wiley Inter-Science.
- 4. Introduction to Robotics / John J Craig / Pearson Edu.
- 5. Robot Dynamics & Control Mark W. Spong and M. Vidyasagar / John Wiley & Sons (ASIA) Pte Ltd.
- 6. Robotics and Control / Mittal R K & Nagrath I J / TMH

NPTEL Link: https://archive.nptel.ac.in/noc/courses/noc22/SEM1/noc22-me39/

Course Code:	Design for Engenemics	Credits:
MEN15261/MEN16261	Design for Ergonomics	3-0-0:3

Prerequisites: NIL

Course Outcomes:

CO1	Students will be able to apply the physical ergonomics concepts for the product										
	improvement.										
CO2	Students will be able to apply ergonomics concepts for the design of work space and work										
	environments.										
CO3	Students will be able tounderstand the human information processing and apply these										
	principles for the product interface design.										
CO4	Students will be able to apply human factors in product design for enhanced safety.										

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	2	-	1	1	3	-	2	2	2
CO2	3	2	2	1	2	2	-	1	1	3	-	2	2	2
CO3	3	2	2	1	2	2	-	1	1	3	-	2	2	2
CO4	3	2	2	1	2	2	-	1	1	3	-	2	2	2

Unit	Details	No. Hrs
1	Introduction to ergonomics and relevance to design, Anthropometric measures and use of anthropometric data.	4
2	Physiology, Biomechanics, Kinesiology, Work-related musculoskeletal disorders.	7
3	Workspace Design: Postural triangle, design for standing operator, design for sitting operator, design for hand use, design for foot operation.	8
4	Manual material handling, Hand tool design.	6
5	Human information processing, Design of controls and displays, Graphic-user interface, Tactile interface.	6
6	Human Error, Accidents, and Safety, Human Factors in Systems Design.	4

Text Books:

1	Human Factors in Engineering and	S M Sandersand E J	McGraw Hill
	Design	McCormick	Education
2	Introduction to Ergonomics	R S Bridger	McGraw Hill
			Education
3	Ergonomics - How to design for ease	K Kroemer, H Kroemer,	Prentice Hall
	and efficiency	and K E Kroemer-Elbert	

1	Human – Computer Interaction	A Dix, J Finlay, G D Abowd and R Beale	Pearson Education
2	Ergonomics and safety in hand tool design	C A Cacha	Lewis Publishers
3	The Design of Everyday Things	D Norman	Basic Books
4	Ergonomics for beginners: Industrial	https://nptel.ac.in/courses/1	07103004
	design perspective		
5	Applied Ergonomics	https://nptel.ac.in/courses/1	12104222

C	ourse (Code:	
MEN1:	5256/N	IEN1	6256

Concurrent Engineering

Credits: 3-0-0:3

Prerequisites: Industrial Engineering

Course Outcomes:

CO1	Students will be able to understand the concept of concurrent engineering and its										
	applications in the design of products and systems.										
CO2	Students will be able to analyze, formulate and apply the concepts of DFM and DFA on the										
	new product development as well as the redesign of existing product.										
CO3	Students will be able to understand and determine the product development economics.										
CO4	Students will be able to apply the CE techniques in the product development.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	1	2	2	2	2	2	3	2	2
CO2	3	2	3	2	2	2	2	2	2	2	3	3	3	2
CO3	2	2	3	2	2	2	2	2	2	2	2	2	2	3
CO4	3	3	3	2	2	2	2	2	2	2	2	2	3	3

Unit	Details	No. Hrs
1	Introduction- Basic concepts, sequential Engineering, sequential engg Vs CE, why	4
	CE, mathematical model for understanding interactions between design and	
	manufacturing, examples, benefits of CE, characterization of CE environment,	
	difficulties associated with performing CE, CE techniques.	
2	Design for Manufacturing and Assembly- DFA Guidelines- system guidelines, handling guidelines, insertion guidelines, and joining guidelines, theoretical minimum number of parts, design for piece part production, potential conflicts between DFA and DFM, manufacturing cost analysis, basic DFM part cost method, basic assembly method (adapted Xerox producibility index), Boothroyd DFA analysis.	8
3	Design for Manufacturing - Estimation of the manufacturing costs, reduction of costs of components, reduction of costs of assembly, reduction of the costs of supporting production; consider the impact of DFM Decisions on other factors.	4
4	Product Development Economics- Elements of Economic analysis, Build a Base- Case Financial Model, Perform Sensitivity Analysis, Use Sensitivity analysis to understand project Trade-Offs, Consider the influence of the Qualitative factors on project success	4
5	CE Techniques - Quality Function Deployment, The Taguchi Method for Robust Design, Failure Modes and Effects Analysis (FMEA)	6
6	Design for reliability, design for maintainability, design for serviceability and their implementation	2

Text Books:

1	Systems Approach to Computer Integrated Design and Manufacturing	Nanua Singh	Wiley India
2	Product Design for Manufacture and Assembly	G. Boothroyd, P. Dewhurst and W. A. Knight	CRC Press
Re	ferences:	-	
1	Product Design and Development	Karl T. Ulrich, Steven D. Eppinger, and Anita Goyal	McGraw Hill Publication
2	e-Procurement: From Strategy to Implementation	Dale Neef	Prentice Hall Publication.
3	Product Design: Techniques in Reverse Engineering and New Product Development	Kevin Otto and Kristin Wood	Pearson Publication

Course Code:				Crewage	1 200				Cre	dits:
MEN15259/MEN16259				Cryoge	enics				3-0	-0:3
D ! ! / D ! !	701	1	•	TT (1 3 4	m	C	D C'	<i>.</i> •	1 4 '

Prerequisites: Engineering Thermodynamics, Heat and Mass Transfer, Refrigeration and Air Conditioning.

Course Outcomes:

CO1	Students will understand the fundamentals of the cryogenic systems and will be able to know								
	how to design components of the cryogenic system like heat exchangers, insulation, etc.								
CO2	Students will able to analyse the losses in each component of different cycles.								
CO3	Students will be able to identify the appropriate refrigeration cycle for a particular								
	application.								
CO4	Students will be able to identify the criteria for the selection of materials for the								
	manufacturing of the components used in cryogenic applications.								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	1	1	0	0	0	0	3	2	3	2
CO2	3	2	2	2	3	0	0	0	0	0	2	2	3	2
CO3	2	2	3	2	1	2	1	0	0	0	0	2	3	2
CO4	3	1	3	2	1	1	1	1	0	0	1	2	3	2

Unit	Details	No. Hrs
1	Introduction: Historical background Current applications. Refrigeration and liquefaction Principles. Joule-Thomson expansion cycles: Simple Linde-Hampson system, Precooled Linde-Hampson system, Cascade system, and Mixed-Refrigerant Cascade Cycles. Isentropic expansion cycles: Simple Gas Expansion Cycle: Simon Helium Liquefier, Kapitza system, Claude system, Collins helium-liquefaction system. Refrigerators for temperatures below 2 K: Magnetic refrigeration systems, Dilution refrigerators. Cold-gas refrigerators: Stirling cycle, Gifford-McMahon cycle and Pulse Tube Refrigerator	8
2	Separation and purification systems: Properties of mixtures, General characteristics of mixtures, Temperature-composition diagramsPrinciples of gas separation: Simple condensation or evaporation, Principles of rectification, Flash calculations Air-separation systems: Linde single column system, Linde double-column system, Argon-separation systems; Neon-separation system	8
3	Measurement systems: Temperature scales and fixed points, Metallic resistance thermometers, Semiconductor resistance thermometers, Thermocouples Vacuum measurement: McLeod gauge, Knudsen gauge, Momentum Transfer gauge, Pirani gauge, Ionization Gauge Insulations: Expanded-foam insulations, Gas-filled powders, and fibrous insulations, Vacuum insulation, Evacuated-powder, and fibrous insulations, Opacified-powder insulations, Multilayer insulations, Comparison of insulations, Vapor-shielded vessels	8

	Properties of engineering materials:	8
	Mechanical properties: Ultimate and yield strength, Fatigue strength, Impact	
	strength, Hardness, and ductility, Elastic moduli	
	Thermal properties.	
	Thermal conductivity: Specific heats of solids, Specific heat of liquids and gases,	
4	Coefficient of thermal expansion.	
	Electric and magnetic properties: Electrical conductivity, Superconductivity	
	Properties of cryogenic fluids: Helium 4 and Helium 3.	
	Critical components of refrigerators: Heat exchangers: Heat-transfer coefficients	
	and friction factors, Effectiveness-NTU approach in heat-exchanger analysis,	
	Effect of heat-exchanger effectiveness on system performance.	

Text Books:

1	Cryogenic heat transfer	Barron, Randall F., and Gregory F. Nellis	CRC Press.
2	Cryogenic systems	Barron, Randall F	Oxford University Press, and Oxford: Clarendon Press
3	Cryogenic process engineering	Timmerhaus, Klaus D., and Thomas M. Flynn	Springer Science & Business Media
Re	ferences:		

1	Measurement systems:	Doebelin, Ernest O., and	Pearson
	application and design	Dhanesh N. Manik	
2	Cryogenic mixed refrigerant	Venkatarathnam, Gadhiraju,	Springer
	processes	and Klaus D. Timmerhaus	

Course Code:	Design for Monufosturing and Assembly	Credits:
MEN15262/MEN16262	Design for Manufacturing and Assembly	3-0-0:3

Prerequisites: Workshop and Manufacturing Processes, Manufacturing Science and Technology

Course Outcomes:

CO1	Students will be able to understand the significance of Design for Manufacture and
	Assembly.
CO2	Students will be able to apply the concept of DFM for casting and machining
CO3	Students will be able to apply the concept of DFM for forming, sheet metal work and
	assembly
CO4	Students will be able to apply the concept of DFMA for a given product

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2		1	1	2		1	1		2	3	2
CO2	2	2	2		1	1	2		1	1		2	3	2
CO3	2	2	2		1	1	2		1	1		2	3	2
CO4	2	2	2		1	1	2		1	1		2	3	2

Unit	Details	No. Hrs
	Introduction: How Does DFMA Work?, Reasons for Not Implementing DFMA,	6
	What Are the Advantages of Applying DFMA During Product Design?, Typical	
	DFMA Case Studies, Overall Impact of DFMA on Industry.	
1	Selection of Materials and Processes: General Requirements for Early Materials	
	and Process, Selection, Selection of Manufacturing Processes, Process Capabilities,	
	Selection of Materials, Primary Process/Material Selection, Systematic Selection of	
-	Processes and Materials	~
	Design for Manual Assembly : General design guidelines for manual assembly,	3
2	development of the systematic DFA methodology, assembly efficiency, Effect of	
	Factors, estimation of insertion time.	
	Pacions, estimation of insertion time.	1
	besign for Machining: General design rules for machining - Dimensional	4
3	of components for machining asso with suitable examples. Constal design	
	recommendations for machined parts	
	recommendations for machined parts.	
	Design for Sand Casting and Die Casting:	5
	Sand Casting Alloys, Basic Characteristics and Mold Preparation, Sand Cores,	
	Melting and Pouring of Metal, Cleaning of Castings, Cost Estimating, Design	
4	Rules for Sand Castings. The Die Casting Cycle, Auxiliary Equipment for	
	Automation, Determination of the Optimum Number of Cavities, Determination of	
	Appropriate Machine Size, Die Casting Cycle Time Estimation, Die Cost	
	Estimation, Design Principles.	
5	Design for Forging, Extrusion and Sheet Metal Working: Design factors for	6
5	Forging — Closed die forging design — parting lines of die, drop forging die	

	design — general design recommendations. Design guidelines for extruded sections - Dedicated Dies and Press-working, Press Selection, Turret Press working, Press Brake Operations, Design Rules	
6	 Design for other Misc Processes; Design for Human Factors; Design for X – Reliability, Serviceability, Environment, Disassembly Design for Assembly Automation: Fundamentals of automated assembly systems, System configurations, parts delivery system at workstations, various escapement and placement devices used in automated assembly systems, Quantitative analysis of Assembly systems, Multi station assembly systems, single station assembly lines. 	7

Text Books:

1	Product Design for Manufacture and Assembly	GeoffreyBoothroyd,PeterDewhurst,Winston A. Knight	CRC Press
2	Assembly Automation and Product Design	Geoffrey Boothroyd	Book World Enterprises
Refere	ences:		
1	Design for Manufacturability Handbook	James Bralla	McGraw-Hill Professional
2	Design for Manufacturing and Assembly: Concepts, architectures and implementation	O. Molloy, E. A. Warman, S. Tilley	Chapman & Hall
3	Handbook of Product Design	Geoffrey Boothroyd	Marcel and Dekken
4	Engineering Design – Material and Processing Approach	George E. Deiter	McGraw Hill Intl

Course Code:	Advanced Machining Processos	Credits:
MEN15253/MEN16253	Auvanceu Machining Processes	3-0-0:3

Prerequisites: Material Science and Engineering, Manufacturing Science and Technology I and II.

Course Outcomes:

CO1	Able to understand the concepts and working of modern material processing technology.									
CO2	Explore the advancement in material processing technology, application area and suitable									
	process.									
CO3	Apply the concepts of advanced material processing technologies to run different manufacturing industries.									
CO4	Identify, design, develop and analyses newer material processing technology for future industries.									

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	1	2	2	-	-	-	-	2	3	2
CO2	2	2	3	3	2	2	2	-	-	-	-	2	3	3
CO3	2	3	3	3	3	-	3	-	-	-	-	2	3	3
CO4	1	2	2	2	2	-	2	-	-	-	-	2	3	2

Unit	Subject Details	No. Hrs
1	Advanced Materials Processing–Introduction, Need and Technological Development, Nature of Materials Processing: Conventional and Unconventional Material Removal Process, Finishing Process, Surface Modification Process, Material Moving Process, Additive Process, Fabrication Process, Applications.	4
2	Advanced Casting Technology-Principals of Stir Casting, Steps in Stir Casting, Factors Affecting Stir Casting, Wettability and its Impact, Composite Preparation, Squeeze Casting, Gel Casting, Advantages, Limitations and Applications.	6
3	Advanced Material Removal and Finishing Process- Tool Design and Geometry, Thermal Analysis, Cutting Fluids, High Speed Machining, Micromachining, Hybrid Machining, Comparative Study of Various Processes, Finishing Process: Abrasive Flow Process, Magnetic Field Assisted Finishing, Burnishing, Micro Grinding, Surface Modification, Applications.	8
4	Advanced Material Moving Process-Hot and Cold Deformation, High Energy Rate Forming, Explosive Forming, Hydraulic Forming, Pulse Forming, Flow Forming, Powder Metal Forming, Advantages, Limitations and Applications.	6
5	Advanced Additive Process- AM & CNC Comparison, Materials of AM Process, Liquid, Solid and Powder based AM Process, Direct Energy Deposition Process, Post Processing of AM Products, Applications.	6
6	Advanced Fabrication ProcessFriction Stir Welding, Plasma Welding Process, Electron Beam Welding, Laser Beam Welding, Hybrid Welding, Semiconductor Fabrication, Free Form Fabrication, Advantages, Limitations and Applications.	6
Text]	Books:	
1 Co	omprehensive Materials Processing M.S.J. Hashmi Elsevier	

¹ Comprehensive Materials Processing

Elsevier

2	Advanced Machining and Finishing	Kapil Gupta, Alokesh Pramanik	Elsevier
3	Fundamentals of Modern Manufacturing: Materials Processes and Systems	M P Groover	Wiley
4	Manufacturing Processes for Engineering Materials	Serope Kalpakjian	Pearson
5	Technology of Metal Forming Processes	Surender Kumar	Prentice- Hall
6	Laser Fabrication and Machining of Materials	Narendra B. Dahotre, Sandip P. Harimkar	Springer
7	Handbook of surface improvement and modification	George Wypych,	ChemTech Publishing
Re	ferences:		
1	Advanced Materials Processing and	Yogesh Jaluria	Springer
	Manufacturing		
2	Advances in manufacturing and processing of materials and structures	Yoseph Bar-Cohen	CRC Press
3	Principles of Metal Casting	R.W. Heine, CarlLoper, and P. C. Rosenthal	Tata McGraw Hill
4	Friction stir welding and processing	R. S. Mishra	ASM International
5	Principles of Laser Materials Processing	Elijah Kannatey-Asibu Jr.	Wiley
6	Additive manufacturing: applications and innovations	Rupinder Singh, J. Paulo Davim	CRC Press
7	Additive Manufacturing: Design,	Steinar Westhrin Killi	Pan Stanford Publishing
	Methods, and Processes		C

Course Code: MEN15276/MEN16276

Product Lifecycle Management

Credits: 3-0-0:3

Prerequisites: Industrial Engineering [Basic] and Introduction to Design and Manufacturing

Course Outcomes:

CO1	Students will be able to understand the concept of product lifecycle management
CO2	Students will be able to explain the integration and deployment of PLM System with other
	system
CO3	Students will be able to recognize the benefits of PLM in conventional and e-business.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	2	1	3	3	3	3	3	1	3
CO2	3	2	2	1	2	2	1	3	3	3	3	3	2	3
CO3	3	3	3	3	3	2	1	3	3	3	3	3	3	3

Unit	Details	No. Hrs
	Introduction to PLM – background, Product data or product information, Product	7
1	lifecycle management concept, Product lifecycle management systems, Reasons for	
	the deployment of PLM systems, Information models and product structures.	
	Product lifecycle management systems – Functionality, Use of product lifecycle	7
2	management systems in different organization verticals, Product development and	
2	engineering, Production, Sales and marketing, After sales, Sourcing and	
	procurement.	
	Integration of the PLM system with other applications- Different ways to	6
3	integrate PLM systems, Database integration, System roles, ERP, CAD,	
	Configurators	
	Deployment of the PLM system – Different stages of deployment, Leading a	7
1	PLM project, Choosing a system, Realization stage of the project, Start up, Steering	
4	group, Project group, Project manager, Accomplishing change in the organization,	
	Problems	
	Business benefits of a PLM system - Factor sleading to product lifecycle	7
5	management, Benefits of the PLM system in product lifecycle management,	
5	Measuring the business benefits in daily operations, Improving the productivity of	
	labor, Costs of quality	
	Electronic business and PLM - Preconditions for electric business, Significance	2
6	of product management, collaboration and electronic business for the	
	manufacturing industry.	

1 Product Lifecycle Management

Antti Saaksvuori and Springer Publications Anselmi Immonen

References:

- 1 Product LifecycleManagement John Stark Springer Product Designand Development 2

Karl T. Ulrich and Mc. Graw Hill, Irwin Steven D. Eppinger

Course Code:	Computational Fluid Dynamics	Credits:
MEN15255/MEN16255	Computational Fluid Dynamics	3-0-0:3

Prerequisites: Engineering Thermodynamics, Heat Transfer, Numerical Methods in Engineering

Course Outcomes:

CO1	To understand various discretization methods for solving PDE problems						
CO2	To understand fundamental matrix algebra concepts to solve simultaneous linear equations						
	numerically						
CO3	To apply numerical methods to obtain approximate solutions of General Transport equations						

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	1	1	1	1	-	-	-	3	3	3
CO2	3	2	2	1	1	1	1	1	-	-	-	2	3	2
CO3	2	3	3	2	3	2	1	1	-	-	-	3	2	3

Unit	Details						
em							
	Mathematical Description of the Physical Phenomena-Governing equations—	5					
1	mass, momentum, energy, species, General form of the scalar transport equation,						
1	Elliptic, parabolic and hyperbolic equations, Behaviour of the scalar transport						
	equation with respect to these equation type.						
	Discretization Methods- Methods for deriving discretization equations-	6					
2	Introduction to finite difference, finite volume and finite element methods, Method						
2	for solving discretization equations – iterative methods, Consistency, stability and						
	convergence - Von-Neumann stability analysis.						
	Diffusion Equation- 1D-2D steady and transient diffusion, Treatment of source	7					
	terms, non-linearity, Boundary conditions, interface diffusion coefficient, Under-						
3	relaxation, Unsteady diffusion, Explicit, Implicit and Crank-Nicolson scheme, Two						
	dimensional conduction, Boundeness, accuracy, stability and convergence for						
	diffusion problems.						
	Convection and Diffusion- Steady and transient one-dimensional convection and	6					
	diffusion, Upwind, exponential, hybrid, power, QUICK scheme, Two-dimensional						
4	convection-diffusion. Accuracy of Upwind scheme; false diffusion and dispersion,						
	Boundary conditions.						
	Flow Field Calculation- Incompressibility issues and pressure-velocity coupling,	7					
5	Primitive variable versus other methods, Vorticity-stream function formulation,						
-	Staggered grid, SIMPLE family of algorithms.						
6	Latest Developments in CFD Techniques and newer applications	3					

Text Books:

1 Numerical Heat Transfer and Suhas V. Patankar

CRC Press.

Scheme and Syllabi

Fluid Flow

2 Computational Fluid Dynamics Jr. Anderson - The basics with applications TATA McGraw-Hill

References:1An Introduction toComputational Fluid Dynamics:The Finite Volume Method

W. Pearson

Course Code: MEN15260/MEN16260

Design against Fatigue and Fracture

Credits: 3-0-0:3

Prerequisites: Material Science and Engineering, Mechanics of Materials

Course Outcomes:

CO1	Students will be able to understand the concept of fracture mechanics in the design of
	products and systems.
CO2	Students will be able to formulate the effect of cracks, flaws on mechanical behavior of
	components.
CO3	Students will be able to analyze and determine the effect of inherent/nucleated cracks and
	flaws under monotonic and fluctuating load conditions both analytically and experimentally.
CO4	Students will be able to predict the life of components under cyclic loading conditions and
	apply the knowledge in research and development activity for betterment of the society.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				3	3	3
CO2	3	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1				3	3	3
CO4	3	3	3	2	3	2	1	1				3	3	3

Unit	Details	No. Hrs				
1	Stress concentration effect of flaws, Cracks as stress raisers; The Griffith energy	5				
1	balance, The energy release rate, Crack growth instability analysis and R-curve.	1				
	Stress analysis of cracks: Generalised In-plane Loading (Williams approach),	7				
	Westergaard stress function, Behaviour at Crack Tips in Real Materials; Effects of	1				
2	Cracks on Strength; Effect of Cracks on Brittle versus Ductile Behaviors, The	1				
	stress Intensity factor K, Crack tip plasticity, Fracture toughness, K as a failure	1				
	criterion, Trends of K _{IC} with material	1				
	Crack tip opening displacement (CTOD), The J-contour integral, J as a nonlinear	6				
3	energy release rate, J as a Path-Independent Line Integral, J as a Stress Intensity	1				
	Parameter, Laboratory measurement of K _{IC}					
	Micro-mechanism of fatigue, Introduction, Fatigue Design Criteria : Infinite life	5				
4	design, safe life design, fail-safe design, Damage Tolerant Design, Fatigue Tests	1				
	and the stress-life (S-N) Approach.					
	Cyclic deformation and the strain-life (ϵ -N) approach, Fundamentals of LEFM and	6				
5	application to fatigue crack growth : LEFM concepts, Cyclic plastic zone size,	1				
5	fatigue crack growth, mean stress effect, Experimental measurement of fatigue	1				
	crack growth.					
	Fatigue from variable amplitude loading: Spectrum loading, Cumulative damage	6				
6	theories, Load interaction and sequence effects, cyclic counting method, crack					
	growth and life estimation methods.					

Text Books:

Scheme and Syllabi

Zuidema and Russell Francis Group)

R.R.

Stephens , John Wiley

Michael Janssen, Jan Spon Press (Taylor &

- 1 Fracture Mechanics
- 2 Metal Fatigue in Engineering

R

		Fuchs	
Refe	erences:		
1	Fracture Mechanics: Fundamentals and Applications	T.L.Anderson	CRC Press
2	Fundamentals of Fracture Mechanics	J.F.Knott	Butterworths
3	Fatigue Damage, Crack Growth and Life Prediction	F.Ellyin	Chapman & Hall
4	Elementary Engineering Fracture Mechanics	D. Broek	Kluwer Academic
5	Fracture Mechanics with an introduction to micromechanics	Gross and Seelig	Springer
6	Elements of Fracture Mechanics	Prashant Kumar	Tata McGraw Hill
7	Deformation and Fracture Mechanics of	R.W. Hertzberg	John Wiley
	Engineering, Materials	-	-

Wanhill

A.Fatemi,

Stephens and H.O.

R.I.

##

Course Code: MEN15258/MEN16258

Condition Monitoring and Diagnostics

Credits: 3-0-0:3

Prerequisites: Basic knowledge of science and engineering

Course Outcomes:

CO1	Students will be able to understand the concept of condition monitoring and diagnostics of
	the systems.
CO2	Students will be able to select appropriate condition monitoring and diagnostics technique in
	a given system/plant.
CO3	Students will be able to explore the data acquisition system, sensors, signal processing
	required for condition monitoring of the system.
CO4	Students will be able to analyze and identify the faults in the system.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				3	3	3
CO2	3	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1				3	3	3
CO4	3	3	3	2	3	2	1	1				3	3	3

Unit	Details	No. Hrs
1	Principles of Maintenance: Reactive Maintenance, Preventive Maintenance, Predictive Maintenance, Enterprise Resource Planning, Bath Tub Curve, Failure Modes Effects and Criticality Analysis (FMECA)	5
2	Digital Signal Processing: Classification of Signals, Signal Analysis, Frequency Domain Signal Analysis, Fundamentals of Fast Fourier Transform, Computer- Aided Data Acquisition, Signal Conditioning, Signal Demodulation, Cepstrum Analysis	5
3	Vibration Monitoring: Principles of Vibration Monitoring, Misalignment Detection, Eccentricity Detection, Cracked Shaft, Bowed and Bent Shaft, Unbalanced Shaft, Looseness, Rub, Bearing Defects, Gear Fault, Faults in Fluid Machines, Case studies.	10
4	Electrical Machinery Faults: Construction of an Electric Motor, Faults in Electric Motor, Fault Detection in Electric Motors, MCSA for Fault Detection in Electrical Motors, Instrumentation for Motor Current Signature Analysis, Fault Detection in Mechanical Systems by MCSA, MCSA for Fault Detection in any Rotating Machine, Fault Detection in Power Supply Transformers, Fault Detection in Switchgear Devices, Case studies.	5
5	Thermography and Wear Debris Analysis : Thermal Imaging Devices, Use of IR Camera, Industrial Applications of Thermography, Applications of Thermography in Condition Monitoring, Mechanisms of Wear, Detection of Wear Particles, Common Wear Materials, Oil Sampling Technique, Oil Analysis, Limits	5

	of Oil Analysis, Case studies.	
6	Machine Tool Condition Monitoring: Tool Wear, Sensor Fusion in Tool Condition Monitoring, Sensors for Tool Condition Monitoring, A Tool Condition Monitoring System	5

Text Books:

1	Machinery Condition Monitoring: Principles and Practices	Mohanty, A. R	Taylor and Francis, CRC Press
Ref	erences:		
1	Mechanical fault diagnosis and condition monitoring	Collacott, R.A.	John Wiley
2 3	Handbook of condition monitoring Machinery malfunction diagnosis and correction	Davis, A. Eisenmann, R. C	Springer Prentice Hall

Energy Management

Credits: <u>3-0-0-3</u>

Prerequisites: Physics, Thermodynamics

Course Outcomes:

CO1	Develop an understanding of the energy-economy-environment nexus.
CO2	Use the techniques of energy auditing and benchmarking in the industrial sector.
CO3	Acquire basic knowledge of sustainable energy technologies and their applications.
CO4	To carry out techno-economic feasibility of energy conservation opportunities in different
	sectors of the economy.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	2	-	3	3	-	-	-	-	3	3	-
CO2	3	3	-	3	3	-	-	-	-	-	-	-	3	3
CO3	3	3	-	3	-	-	3	-	-	-	-	-	3	2
CO4	-	-	3	-	3	-	3	-	3	3	3	-	-	3

Unit	Details	No. Hrs
	Introduction: Energy supply and demand, energy linked environmental crises-	5
1	causes and options in the present scenario of global warming, Energy classification:	
	renewable and non-renewable forms of energy and their characteristics.	
2	Energy-economy-environment nexus: energy-economy link and factors affecting it,	3
2	net energy, gross pollution and growth constraints.	
	Energy auditing and benchmarking: Process and gross energy requirements,	5
3	Carbon Footprint, Energy payback time, Identification of energy conservation	
	opportunities, Benchmarking and its parameters.	
	Technical options for emissions mitigation: Combined cycles, Combined heat and	12
	power systems (Co-generation and tri-generation systems); Combined cooling and	
4	power systems, energy efficiency through heat pumps; cascade refrigeration with	
-	V-C and V-A systems, Mechanical Vapor Recompression (MVR) systems, Energy	
	recovery in refrigeration and air-conditioning systems; District Cooling, Geo-	
	thermal heat pumps, Earth-air heat exchangers.	
5	Case studies from industrial/ commercial/ transport/ agricultural/ residential	5
5	sectors.	
6	Non-technical options for emissions mitigation: Energy rebound effect, Life	3
0	style/attitudinal changes, GDP vs. holistic growth.	

Text Books:

1	Energy Systems and Sustainability	Boyle et al	Oxford University Press
2	Renewable Energy	Boyle et al	Oxford University Press

References:

Scheme and Syllabi

1 Energy efficiency

Eastop and Croft

- 2 Bureau of Energy Efficiency Ministry of Power (BEE)
- 3 Our Choice
- 4 An Inconvenient Truth
- 5 Before the flood

Al Gore Al Gore Leonardo DiCaprio Longman Scientific and Technical Government of India

Bloomsbury Publishing Oscar winning documentary National Geographic documentary

Design of Transmission Elements

Credits: 3-0-0:3

Pre-requisites: Engineering Mechanics, Strength of Materials, Materials Science and Engineering, Theory of machines, Measurement and metrology and Design of Machine Elements

Course Outcome

CO1	Students will be able to identify materials which can be used to make the transmission elements for a particular application
CO2	Students will be able to apply AGMA design methodology for design of gears
CO3	Students will be able to understand and analyze the principles of lubrication in design and selection of bearings
CO4	Students will be able to select and design flexible transmission elements, brakes and clutches.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	1	2	1	2	2	2	-	3	3	3
CO2	2	2	2	3	1	2	2	1	1	1	1	3	3	3
CO3	3	3	3	3	2	1	1	-	1	2	-	3	3	3
CO4	3	3	3	3	2	2	1	2	2	2	2	3	3	3

Unit	Details	No. Hrs
1	Spur Gears : Kinematics of gears, Conjugate Action, standard tooth systems for spur gears, Profile shifted gears, Involutometry, gear cutting methods, Modes of gear failure, Spur gear tooth force analysis, Tooth bending stress – AGMA procedure, Bending fatigue strength – AGMA procedure, Buckingham equation for dynamic load on gears, Buckingham contact stress equation, Contact stress – AGMA procedure, Surface fatigue strength – AGMA procedure, Gear materials.	8
2	Helical Gears- Kinematics, geometry and nomenclature, force analysis, Design of helical gears: bending stress, contact stress, Crossed helical gears Worm Gears: Geometry and nomenclature, Force analysis, Friction analysis and efficiency, thermal capacity, bending and surface strength, power rating efficiency, worm gear standards and proportions. Bevel Gear and Worm and Worm Gear [Self Study]	6
3	Antifriction bearing-Types of ball bearings, roller bearings, needle bearings, friction life of bearings, reliability considerations, selection of ball bearings, roller bearing, tapered roller bearing, thrust bearing, lubrication and sealing, Mounting of bearings.	6

4	Lubrication and sliding bearings -Type of lubrication, viscosity, hydrodynamic theory of lubrication, types of bearing, design of bearing using design charts, boundary lubrication, hydrostatic bearing, and hydrodynamic thrust bearings.	6
5	Flexible Elements Design of Flat belts and pulleys – Selection of V belts and pulleys – Selection of hoisting wire ropes and pulleys – Design of Transmission chains and Sprockets.	6
6	Clutches and Brakes Design of plate clutches –axial clutches-cone clutches-internal expanding rim clutches- Electromagnetic clutches. Band and Block brakes, Disc Brake, Elecro- mechanical brakes	7
7	Case Studies on Transmission Elements	1

Text Books:

1	Mechanical Engineering Design	Joseph E. Shigley and Charles R. Mischke	Tata McGraw-Hill, New Delhi
Refe	rences:		
1	Machine Design An Integrated Approach	R. L. Norton	Pearson Prentice Hall
2	Machine Component Design	Juvinall R. C. and Marshek, K. M.,	John Wiley
3	Design of Machine Element	V. B. Bhandari	Tata McGraw-Hill
4	Design Data sheets – Will be provided by the course instructors		

Non-conventional Energy Sources

Credits: 3-0-0:3

Pre-requisites: NIL Course Outcomes:

CO1	Understand the concept of energy crisis, non-conventional energy resources, availability and							
	their importance.							
CO2	Understand various methods to harness non-conventional energy resources.							
CO3	Apply the methods for better harness, conversion techniques, and utilization of non-							
	conventional energy resources.							
CO4	Analyse various problems, limitations, complexities and performances of power plants based							
	on non-conventional energy resources.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	2	2	2	3	3	2
CO2	3	3	2	2	2	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Unit	Details	No. Hrs
	Introduction: The energy crisis – causes and options, various conventional and non-	4
1	conventional forms of energy and their characteristics, availability of non-	
	conventional energy and land area requirements.	6
	radiation at the earth's surface. Types of collectors such as flat-plate and	0
	concentrating collectors, solar thermal power generation, solar ponds and energy	
2	storage. Principle of Solar photovoltaic, materials, mono-crystalline, polycrystalline	
	and amorphous silicon cells and their production technology, I-V characteristics,	
	parameters of performance, modules, array and PV plant configurations and power	
	generation.	
	Biomass energy: Introduction, Incineration, Thermo-chemical and biochemical	5
3	conversion to solid, liquid and gaseous fuels; Production technologies for bio-	
	ethanol, biogas and producer gas, Urban waste to energy processes.	
	Ocean, Wave and Tidal energy: Introduction, Ocean thermal energy conversion	5
4	(OIEC) – closed and open cycles and their limitations, Wave energy and its	
	conversion processes, 1 idal energy – nature of the tides and tidal barrages for power	
-	Wind operate Fundamentals, power in the wind site selection, maximum power	5
5	coefficient wind turbine and its types – horizontal axis and vertical axis machines	5
5	performance of wind machines, wind energy farms	
	Geothermal energy: Introduction, Geothermal energy resources. Hot aquifers and hot	4
6	dry rock systems, geothermal electric power plants.	-
7	Other Technologies: Magnetohydrodynamics (MHD) Energy conversion, Fuel Cells,	4
/	Nuclear Energy, Hydrogen, Methanol, Energy Storage.	

Text Books:

- 1 Renewable Energy Sources and Emerging Technologies
- 2 Solar Energy-Fundamentals, Design, Modeling & Applications'

References:

- 1 Advanced Renewable Energy Sources
- 2 Biogas Systems: Principles and Applications
- 3 Wind Energy Come of Age
- 4 Solar Energy Fundamentals
- 5 Solar Photovoltaics: FundamentalsTechnologies and Applications
- 6 Energy Technology (Non Conventional, Renewable And Conventional)

D.P.	Kothari,	K.(
Singa	l and R. Ra	njar
G.N. 7	Гiwari	•

.C. PHI Learning Pvt. Ltd., New n Delhi Narosa Publishing House, New Delhi, India

G.N. Tiwari and R.K.	RSC Publishing, Cambridge,
Mishra	U.K
K.M Mittal	New Age International Limited
	Publishers.
Gipe P	John Wiley and sons, New
-	York.
S. Kalogirou	Academic Press
C.S. Solanki	PHI Learning Pvt. Ltd., New
	Delhi

S. Rao, BB Parulekar Khanna Publishers

Department of Mechanical Engineering

Supply Chain Management

Credits: 3-0-0:3

Pre-requisites: Industrial Engineering

Course Outcome

S. N.	Outcomes
CO1	Understand how each functional component and its processes become one integrated operation to satisfy customer's needs.
CO2	Develop an understanding of how to manage the interaction of business functions across companies in the supply chain.
CO3	Develop an understanding of how to manage the impact of demand on the supply chain and the considerable competitive advantages that can result from managing demand across companies.
CO4	Effectively manage the flow of resources and information among the various partners of the supply chain.
CO5	Develop an understanding of how logistics and supply chain strategies can create value generation and utilise IT applications

CO1	2	3	3	3	3	2	2	2	2	2	3	3	3	2
CO2	1	3	3	3	3	2	3	3	2	2	3	3	3	2
CO3	2	3	3	3	3	3	2	2	2	3	3	3	2	3
CO4	2	3	3	3	3	3	2	2	3	2	3	3	2	3
CO5	1	3	3	2	2	3	2	2	2	2	3	3	3	3

Module	Content	Lectures
1	Basics of Supply Chain: Introduction to Supply Chain Management,	8
	Understanding the Supply Chain, Supply Chain Performance: Competitive and	
	Supply Chain Strategies, achieving Strategic Fit and Scope of Strategic Fit	
2	Design of Supply Chain Drivers: Supply Chain Drivers and Metrics: Drivers	8
	of Supply Chain Performance, Framework for structuring Drivers, Facilities,	
	Inventory, Transportation, Information, Sourcing and Pricing, Case Study: :	
	Seven-Eleven Japan Company, Planning Demand and Supply In a Supply	
	Chain: Demand Forecasting in a Supply Chain, Aggregate Planning in a	
	Supply Chain	
3	Design of Distribution Network and Network Design: Designing	8
	Distribution Networks and Application to E-Business- Role of distribution,	
	factors influencing distribution network design, design options for a	
	distribution network, E-Business and the distribution network, Network Design	
	in the Supply Chain- Role of network design in the supply chain, factors	
	influencing network design decisions, framework for network design decisions	
4	Role of Information Technology in supply chain, coordination in a supply	10
	chain, Bullwhip Effect, Effect on performance due to lack of coordination,	
	obstacles to coordination in a supply chain, Factors influencing logistics and	

		decisions, Benchmarking and performance measurement, Internal Supply	
		Chain Management and its drivers, External Supply Chain Management and its	
		drivers.	
Ī	5	Sustainable Supply Chain Management, Digital Supply Chain Management	4
		and Smart Supply Chain Management	

Text Books:

- 1. Supply Chain Management: Strategy, Planning & Operation- Sunil Chopra and Peter Meindle- Pearson Prentice Hall Publication.
- 2. Supply Chain Management in the 21st Century- B. S. Sahay- MacMillan Publication.

Reference Books:

- 1. Logistical Management: The integrated Supply Chain Process- Donald J. Bowersox and David J. Closs- TMH Publication.
- 2. Supply Chain Management Maretin Christopher
- 3. World Class Supply Management: The key to Supply Chain Management- Burt, Dobler and Straling TMH Publication.
- 4. Logistics and Supply Management D K Agarwal MacMillan Publication
- 5. Supply Chain Management: Theories & Practices R P Mohanty and S. G. Deshmukh-Biztantra Publication.
- 6. e-Procurement: From Strategy to Implementation- Dale Neef- Prentice Hall Publication.

Course Code: MEN15272/MEN16272	Mechanical Micromachining Technology	Credits: 3-0-0-3
Scheme and Syllab	bi 139	w.e.f.2022-23

Prerequisites: Material Science and Engineering, Manufacturing Science and Technology-I, Manufacturing Science and Technology-II.

Course Outcomes:

CO1	Able to understand the fundamental concepts of modern mechanical micromachining
	technology.
CO2	Apply the concepts of micro turning, micro drilling, micro milling and micro grinding for
	fabrication and finishing of micro-featured products.
CO3	Utilize the in-process monitoring tool in micromachining to improve the tool life and
	product quality.
CO4	Identify and apply the possibilities of mechanical micromachining techniques in the
	emerging areas.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-	-	1	-	2	1	2	-	-	-	3	1
CO2	2	3	3	3	3	3	2	1	2	1	-	2	3	3
CO3	2	3	3	2	2	2	2	-	-	-	-	2	3	3
CO4	-	1	2	2	2	1	2	-	-	-	-	3	3	2

Unit	Subject Details	No. Hrs
1	Fundamentals of Micromachining - Introduction, Materials in Micromachining, Experimental Observation and Theoretical Prediction of an Atom, Micromachining Mechanics: Size Effect, Minimum Chip Thickness, Specific Cutting Energy, Surface Generation and Burrs, Surface Roughness, Cutting Fluid, Issues and Challenges, Mechanical Micromachining Processes, Ductile Mode Machining of Brittle Materials, Machined Surface Quality with Chip Formation Mode.	7
2	Micro Turning and Diamond Turning- Basics of Micro Turning, Mechanics of Micro Turning, Size Effect in Micro Turning, Diamond Technology, Ultraprecision Diamond Turning, Material Perspective and Micro-structuring, Surface Quality in Micro Turning.	6
3	Micro Drilling- Introduction to Micro Drilling, Issues and Challenges, Cutting Mechanics, Tool Selection, Burr Elimination, Hole Quality and Roundness Error, Process Parameter Selection.	5
4	Micro Milling- Introduction, Elements in Micro Milling, Micro Milling Mechanics of chip Removal, Scientific and Technological Challenges, Surface Quality and Burr Removal, Hybrid Micro Milling Process, Freeform Milling, Process Parameter Selection.	7
5	Micro Grinding- Introduction, Chip Removal Mechanism, Interaction between Diamond Abrasive and Work material, Implementation Perspective: Truing and Dressing, Tool Topography and Edge Distribution, Profile Grinding.	5
6	In-Process Monitoring, Product Quality and Industrial Applications- In- Process Monitoring of Cutting Force, Tool Wear and Surface Form, Online Measurement by Machine Vision and Integrate Probe, Surface Integrity and Other	6

Related Measurements, Product Quality, Industrial Applications of Micromachining: Semiconductor, Electronics, Optics, Heat Transfer, Medical, Aerospace and Automotive Industry.

Text Books:

1	Micromachining of	Engineering	I A McGeough	CRC Press
1	Materials	Lingineering	s.r.t. the Geough	
2	MicromachiningTechniqu	ies	Mojtaba Kahrizi	InTech
	forFabrication of Mic	ro and Nano	-	
	Structures			
3	Micro-CuttingFundament	tals and	Kai Cheng, Dehong Huo	Wiley
	Applications			
4	Nano and Micromachinin	ıg	J. Paulo Davim, Mark J.	John Wiley & Sons
			Jackson	
Re	ferences:			
1	Comprehensive Materia	als Processing	M.S.J. Hashmi	Elsevier
2	Micromachining with	Nanostructured	Mark J. Jackson	Springer
	Cutting Tools			
3	Advanced Machining a	ndFinishing	Kapil Gupta, Alokesh	Elsevier
			Pramanik	
4	Control of Cutti	ng Vibration	C. Steve Suh, Meng-	Wiley
	andMachining		Kun Liu	
_	Instability			
5	An Introduction	to Surface-	Robert W. Johnstone,	Kluwer Academic
	Micromachining		M. Parameswaran	Publishers

Failure Mode and Effect Analysis

Credits: 3-0-0:3

Prerequisites: Mechanics of Materials, Design of Machine Elements, Industrial Engineering

Course Outcomes:

CO1	Students will be able to understand and recognize failure modes in a system
CO2	Students will be able to identify corrective actions resulting from proper FMEA development
CO3	Students will be able to demonstrate the FMEA's role in developing Special Characteristics
	and Design and Process Controls
CO4	Students will be able to apply the method of FMEA in a design, system or process for
	betterment of the society

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	3	2	1	1	3	3	3	2	3	3	3
CO2	3	2	2	3	2	1	1	1	3	3	2	3	3	3
CO3	3	3	3	2	3	2	1	1	3			3	3	3
CO4	3	3	3	2	3	3	1	1	3			3	3	3

Units	Title	Lectures
1	FMEA: A General overview and purpose, Critical or Significant	5
	Characteristics or Key Indicators, Types of FMEAs, Relationships of FMEA	
	and other Tools, Quantitative Techniques, Qualitative Techniques	
2	System/Subsystem/Component Design FMEA: Material Properties (Strength,	7
	Lubricity, Viscosity, Elasticity, Plasticity, Malleability, Machinability etc.),	
	The Geometry of the Product (Shape, Position, Flatness,	
	Parallelism), Tolerances/Stack-Ups, Interfaces with other Components and/or	
	Systems; Manufacturing and Assembly Process FMEA, Machinery and	
	Equipment FMEA (Logistics Support),	
3	Process FMEA: Man - Human Factors / Human Error, Methods - Methods	8
	involved in processes of product/service including assembly lines, supply	
	chains and communications standards, Materials - Materials used in the	
	process, Machinery-Machines utilized to do the work, Measurement -	
	Measurement systems and impact on acceptance, Environment- Mother	
	Earth: The Links between Design and Process FMEA, Special characteristics	
	(critical and significant), Collaboration on special characteristics,	
	Characteristics as inputs to PFMEA	
4	Steps for an FMEA: Review the Process of Product, Brainstorm Potential	8
	Failure Modes, List Potential Effects for Each Failure Mode, Assigning	
	Severity, Occurrence, and Detection Rankings, Assigning a Severity Ranking	
	for Each Effect, Assign an Occurrence Ranking for Each Effect, Assigning a	
	Detection Ranking for Each Failure Mode, and /or Effect,	
	Calculating the Risk Priority Number (RPN) for Each Failure Mode,	
	Prioritizing the Failure Modes for Action, Taking Action to Eliminate or	
	Reduce the High-Risk Failure Modes, Calculating the Resulting RPN as the	

	Failure Modes are Reduced										
5	Case studies: FMEA and the Automotive Industry: Definition of FMEA, The										
	FMEA Form, Special Automotive Characteristics, Driving the Action Plan,										
	Getting the Most form FMEA, After the FMEA; FMEA and the										
	Electromechanical Industry etc.										
	FMEA and Robustness										

Text Books:

1. The basics of FMEA, Robert E McDermott, Raymond J. Mikulak, and Michael R. Beauregard, CRC Press

References:

- 1. Failure Mode and Effect Analysis: FMEA form theory to execution, D H Stamatis, ASQ Quality Press
- 2. Failure Mode Effects Analysis: A practical Approach, IanMcAndrew and Elena Vishnevskaya, Lambert
- 3. FMEA Failure Modes Effects Analysis A Complete Guide, Gerardus Blokdyk (Author), 5STARCooks

NPTEL: <u>https://www.youtube.com/watch?v=7bFjH_ZVARI</u>

Course Code: MEN15252/MEN16252 Credits: 3-0-0

Prerequisites: Engineering Thermodynamics, Engineering Mechanics, Automobile engineering (basic course)

Course Outcomes:

CO1	Students will be able to identify different types of automobile structures, body components								
	and body interiors and how their design differ.								
CO2	Students will able to understand and analyze various chassis design and stability of								
	automobiles.								
CO3	Students will be able to identify various modern steering and suspension systems and will								
	able to analyze load associated with these systems.								
CO4	Students will able to analyze vehicle safety related issues and vehicle design parameters that								
	leads to increased safety and methods to reduce vehicle noise.								

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	3	3	2	1	2	-	2	2	2
CO2	3	2	2	2	2	3	3	2	1	2	-	2	3	3
CO3	3	2	2	2	2	3	3	2	1	2	-	2	3	3
CO4	3	2	2	1	2	3	3	2	1	2	-	2	3	2

Unit	Details	No. Hrs
1	Introduction and overview –Beginnings Growth and refinement	4
2	Vehicle Structure, Body Components and Body Interiors: Basic requirement of stiffness and strength Vehicle structure types, Demonstration of Simple Structural Surfaces (SSS), Bumpers, Grilles, Sill covers and side air bags, outer moldings, Weather strips, Glass and Mirrors, Seat Belt Restraint system-Air-Bag, components of Air- Bag, Dash Board	8
3	Chassis : Vehicle and body centre of gravity and handling properties, axle weight and axle centre of gravity, body weight and body centre of gravity, Braking behavior –stability, anti dive control, traction behavior.	8
4	Steering and Suspension systems: types-limitations. Hydraulic, electro hydraulic and electrical power steering, steering column, steering damper. Vehicle weights and axle loads, Shock absorbers, spring damper units, roll center analysis, load due to gyroscopic force on suspension, total load on suspension.	8
5	Automotive vehicle safety, Testing and Noise Control: basic concepts of vehicle safety, techno legal issues- ethics, testing of automotive components, failure investigations, safety factors, designs for uncertainty, crash testing. Interior noise, Engine noise, Road noise, wind noise, brake noise, Interior noise: Assessment and control	8

Text Books:

Scheme and Syllabi

1

The Motor Vehicle

2 Vehicle Body Engineering

3 Tire and Vehicle Dynamics

4 Automotive vehicle safety

Department of Mechanical Er	ngineering
------------------------------------	------------

George A Peters & Barbara CRC Press

Butterworth-Heinemann

Business Books Ltd

Elsevier Ltd

J Peters **References:** Butterworth-Heinemann 1 Advanced Vehicle Technology Heinz Heisler 2 The Automotive Chassis J. Reimpell, H Stoll SAE International 3 Automotive Engineering Richard Stone and J K Ball **SAE** International Fundamentals Lorenzo Morello 4 Automotive Body Springer 5 Automotive Engineering (Power Elsevier collection David A Crolla Train, Chassis system and Vehicle Body) 6 Road Vehicle Dynamics Springer Rao V Dukkipati 7 Highway Design & Traffic Safety McGraw-Hill Education Ruediger Lamm Engineering Handbook 8 The handbook of road Rune Elvik, Emerald safety Group Truls Vaa, measures Publishing Alena Hoye, Michael Sorensen

Newton and Steed

Hans B Pacejka

J. Powloski

Course Code: MEN15268/MEN16268

Forensic Engineering

Credits: 3-0-0:3

Prerequisites: Engineering Mechanics, Strength of Materials, Engineering Graphics, Workshop Practices Course Outcomes:

CO1	Students will be able to identify why do products fail? Inadequate materials, poor										
	manufacturing or assembly methods, bad design										
CO2	Students will be able to identify designer's clues as to what failed, why, and how to avoid										
	future failures. Students will be able to develop need for better design after observing										
	failures.										
CO3	Students will be able to appreciate the techno legal consequences of engineering failures.										
CO4	Students will be able to respect the needs of following standards and procedures. Respect for										
	IPR, Understanding dangers of liability in case of failure leading to losses.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	3	2	3	3	-	-	-	2	2	2
CO2	3	2	2	2	3	2	3	3	-	-	-	2	2	2
CO3	3	2	2	2	3	2	3	3	-	-	-	2	2	2
CO4	3	2	2	2	3	2	3	3	-	-	-	2	2	2

Unit	Details	No. Hrs
1	Introduction to forensic engineering uses -case studies to develop the skills for the analysis of product failure.	9
2	Failure of products and processes provides a 'toolbox' of techniques: observations, scientific and engineering tests that can be used to establish evidence of the causes of a failure in a product or process.	9
3	Catastrophic failures –case studies -examine large-scale failures that have caused loss of life. Case studies related to Slip & Fall, Fire, Automobile Accidents, structural failures etc. Role of design of critical components, poor manufacturing and poor design, material failures, and poor communications leading to failure / disaster.	12
4	Intellectual property matters considers protection of new designs and inventive concepts. It concentrates on the arguments used for understanding particular patents, and the precedents that lawyers use for assessing construction, infringement and validity. Case studies include trials in which imitators were successfully sued by means of patents, and cases of new designs that were challenged unsuccessfully because the patents were weak or did not define the inventive concept widely enough to catch the alleged infringing product.	6

Text Books:

- 1. Introduction to Forensic Engineering (The Forensic Library) by Randall K. Noon, CRC Press (1992).
- 2. Forensic Engineering Investigation By: Randall K Noon
- 3. Learning from Design Failures by Y. Hatimura Springer

References:

- 1. Forensic Engineering, By Kenneth L. Carper
- 2. Understanding How components Fail by: Donald J Wulpi
- 3. International Journal of Engineering Failure Analysis.
- 4. Other reference materials discussed and suggested during lectures.
- 5. Proceedings of First Indo US workshop on forensic Engineering at NIT Tirichirapalli
- 6. The Winning Line: A Forensic Engineer's Casebook, By Andrew E. Samuel
- 7. Along with the above Case studies discussed in the class

Course Code: MEN15279/MEN16279

Surface Treatment and Characterization

Credits: 3-0-0:3

Prerequisites: NIL

Course Outcomes:

CO1	Students will be able to know the surface treatment and characterization methods for the
	newly developed materials and also would be able to conduct the failure analysis of the
	materials.
CO2	Students will be able to obtain the mechanical and metallurgical properties of the
	engineering materials
CO3	Students will be able to prepare the specimen for a particular material and characterization
	technique.
CO4	Students will be able to understand the surfaces, properties, structures and phases of the
	engineering materials

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	3	3	1	2	1				2	3	3
CO2	2	2	2	3	3	1	2	1				2	3	3
CO3	3	2	3	3	3	1	2	1				3	3	3
CO4	3	2	3	3	3	1	2	1				3	3	3

Unit	Details	No. Hrs
1	Property enhancing and surface processing operations: Surface cleaning methods; Mechanical cleaning, chemical cleaning Surface treatment methods: Surface engineering to change the surface metallurgy, surface engineering to change the surface chemistry, surface engineering to add a surface layer or coating, Process comparisons.	12
2	Mechanical Property characterization: Principles and characterization techniques related to Tensile, compressive, hardness, fatigue and fracture toughness properties.	4
3	 Characterization: Optical/Electron Microscopy Techniques: Surface topography, specimen and surface preparation, mounting, elements of phase identification, grain size determination, inclusion analysis, Image analysis, etc. Scanning Electron Microscopy: Theory and principles, construction, controls & operation of scanning electron microscopy, Environmental scanning electron microscopy, High resolution SEM imaging, EDS / EDAX analysis. Transmission Electron Microscopy: Theory and principles, construction and controls. 	8
4	XRD : Principle, Crystallography and Rietveld analysis, Quantitative and qualitative analysis, Residual stress analysis, Determination of layer thicknesses, Small Angle X-ray Scattering (SAXS)	6

	Scanning Probe Microscopy : STM & AFM- Principle, scanning techniques, image capturing and manipulation, and analysis techniques.	
5	Thermal Analysis: Principles and applications of thermal analysis; Dynamic Mechanical Analyzer	2
6	Case studies on characterization of Engineering Materials : Metals and Alloys; Polymers; Composites; ceramics; glasses; Superalloys; Piezoelectric materials (PZT); Shape memory alloys (SMA); Micro-electro- mechanical (MEMS) materials; Nano-structured materials; etc.	4

Text Books:

1	Introduction to Physical Metallurgy	Avner, S.H.	McGraw-Hill	Education,
2	Surface Engineering for corrosion and	J. R. Davis	2017 ASM Internation	nal
	wear resistance			

References:

- 1. Speyer, R.F., Thermal Analysis of Materials, Marcel Decker, 1994.
- 2. Surface Engineering, Vol. 5, ASM Hand book, 1994.
- 3. Materials Characterization, Vol. 10, ASM Hand book, ASM International, 2019.

Additive Manufacturing

Credits: 3-0-0:3

Prerequisites: CAD, Manufacturing Science 1 and 2

Course Outcomes:

CO1	Students will be able to apply the basic CAD and Reverse Engineering (RE) concepts for
	generating solid models of objects using CAD and RE software for AM.
CO2	Students will be able to understand the Additive Manufacturing process chain from CAD to
	part printing to post processing, and the AM materials and hardware.
CO3	Students will be able to comprehend the various types of Additive Manufacturing processes
	for printing different materials along with their comparative strengths, limitations and
	applications.
CO4	Students will be able to familiarize with the basic concepts of Design for Additive
	Manufacturing (DfAM) including Topology Optimization, Generative Design and Lattice
	Design in Additive Manufacturing and apply them to execute an application mini project.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	-	3	1	1	1	2	1	-	2	3	3
CO2	3	1	2	1	3	1	1	1	1	1	1	2	3	3
CO3	3	2	2	2	2	2	2	2	2	1	1	2	3	3
CO4	3	3	2	2	3	2	2	1	3	2	2	2	3	3

Unit	Details	Hrs
1	Introduction to AM: Evolution of AM/3DP vs CNC and Injection Moulding; CAD for AM: Geometric transformations, curve, surface and solid modeling, Data exchange formats, Reverse engineering, Modeling with point cloud data, 3D Scanning devices;	6
2	AM process chain: Tessellation of CAD model, file formats, STL file problems, manipulation and repair, part orientation and support generation, slicing algorithms tool path generation, machine setup and post processing; AM materials and hardware;	8
3	AM processes: Liquid polymer based (FDM, SLA), powder based (SLS, MJP, Binder Jetting), molten metal based (DMLS, SLM, EBM, DED, WAAM), solid sheet based (LOM), Bio printing etc.; AM Process selection for targeted applications and case studies including aerospace, medical and commodity products;	12
4	Basics of Design for Additive Manufacturing (DfAM): Topology Optimization, Generative Design and Lattice Design; Rapid Tooling; Software application of DfAM and 3DP through a product development mini project; Optimization of AM processes for build time, support material, surface finish and part errors.	10

Text B	ooks:		
1	Additive Manufacturing Technologies - 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing (2nd illustrated reprint edition) – 2016	Ian Gibson, D W Rosen and Brent Stucker	Springer
2	Additive Manufacturing: Principles, Technologies and Applications - 2021	C P Paul and A N Jinoop	McGraw Hill
Refere	nces:		
1	3d Printing and Additive Manufacturing Principles and Applications - Fifth Edition - 2016	: C K Chua and K F n Leong	World Scientific Publishing
2	Metal Additive Manufacturing - 2021	E Toyserkani, D Sarker, O OIbhadode, F Liravi, P Russo, K Taherkhani	Wiley
3	Additive Manufacturing. 3D Printing for Prototyping and Manufacturing - 2016	r Andreas Gebhardt and Jan-Steffen Heotter	Hanser Gardner Publications
4	Rapid prototyping and engineering applications: A toolbox for prototype development -2^{nd} edition -2019	g Frank W Liou	CRC Press
5	Additive Manufacturing, 2 nd Edition 2020) Amit Bandyopadhyay and Susmita Bose	CRC Press
6	CAD/CAM: Theory and Practice (Special Indian Edition – 2nd) – 2009	l Ibrahim Zeid and R Sivasubramanian	McGraw Hill Education
7	Engineering Design and Rapic Prototyping–2010	Ali K Kamrani and Emad Abouel Nasr	Springer
Online	Resources:		
1. https	://www.3dsystems.com/		
2. https	://www.metal-am.com/		
3. <u>https</u>	://www.hubs.com/guides/3d-printing/		
4. <u>https</u>	://www.3dprintingindustry.com/		
5. <u>https</u>	://www.thingiverse.com/		
0. <u>https</u>	://all3dp.com/		
7. $\underline{\mathrm{nups}}$ 8. https://www.second.com/second/second-s	://www.engineering.com/home		
9. https	://www.ntopology.com/		
10. http	ps://www.sculpteo.com/		
11. http	os://www.materialise.com/		

Course Code: MEN15277/MEN16277

Production Planning and Control

Credits: 3-0-0:3

Prerequisites: Industrial Engineering.

Course Outcomes:

CO1	Able to understand the concepts of production system, process planning, control of
	resources using technologies in the context of industrial scenarios.
CO2	Able to forecast the requirement and maintain the inventories for smooth functioning of
	industries.
CO3	Apply the concepts of modern production planning and control technologies for capacity
	planning, scheduling, dispatching and balancing of production line.
CO4	Identify and analyses the variability in production line and suggest the suitable aapoaches for
	shop floor control.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	2	1	-	2	1	2	1	2	1	3	1
CO2	-	2	3	3	2	1	1	1	3	1	2	2	2	3
CO3	2	3	2	3	-	-	-	-	2	-	2	2	3	3
CO4	-	1	2	2	-	1	2	3	3	2	2	1	2	2

<u>Unit</u>	Subject Details	<u>No. Hrs</u>
1	Introduction : Function of The Production Planning and Control(PPC) Department, Role of PPC Manager, Interaction of PPC Department with Other Functional and Manufacturing Department, Lean Production and JIT, Production Activity Control, Demand Management.	5
2	Forecasting -Importance of Forecasting, Types of Forecasting and their Uses, General Principles of forecasting – Forecasting Techniques– Qualitative Methods and Quantitive Methods.	4
3	Inventory Management : Functions and Importance of Inventories, Inventory Costs, ABC Analysis, VED Analysis, EOQ Model, Inventory control Systems, P-Systems and Q-Systems, Fixed Order Quantity, Economic Order Quantity, Lot-for-Lot, Fixed Period Requirement, Periodic Order Quantity.	6
4	Fundamentals of Disaggregation : Understanding disaggregation, Generating Master Production Schedule (MPS) from Yearly Demand: role, input, output and approaches. Principles of MPS, Measurement of Effectiveness of MPS. Bill of materials. Materials requirement planning(MRP): Introduction to MRP & ERP, LOB (Line of Balance).	6
5	<u>Capacity Resource Planning</u> : Introduction, Measurement, Terminology, Concept of Load, Methods of Expansion of Capacity, Capacity Planning and Control, Capacity Strategy, Resource Requirement Planning, Rough-Cut Capacity Planning, Capacity Requirement Planning: Benefits and Drawbacks.	5
6	Scheduling Policies : Techniques, Standard Scheduling Methods: Line Balancing, Aggregate Planning, Chase Planning, Expediting, Controlling aspects. Dispatching: Activities of Dispatcher, Dispatching Procedure, Follow Up, Definition, Reason for	7

-		
	Existence of Functions, Types of Follow-up, Applications of Computer in Production	
	Planning and Control. Routing: Definition, Routing Procedure, Route Sheets, Bill of	
	material, Factors Affecting Routing Procedure. Scheduling: Definition, Difference with	
	Loading.	
7	Production Control Fundamentals: Study of Variability in Shop, Variability in	5
	Production Lines, Shop Floor Control, Leagile System, Leagile Manufacturing: A	
	Contemporary Manufacturing Syndrome, System Design for Continuous and Intermittent	
	Production Systems, PPC Module in ERP And SAP, Case Studies.	

Text Books:

 Production Planning and Control: Text S. K. Mukhapadhyay PHI and Cases
 Elements of Production Planning and Samuel Eilon Universal Book Corp. control

References:

1. Production Planning and Inventory Control by Mcleavey W Dennis and Billington J Peter, 2nd Edition, PHI Learning.

2. Fundamentals of Production Planning and Control by Stephen N Chapman, 1st edition, Pearson.

3. Analysis and control of Production System by Elsayed A Elsayed, Thomas O. Boucher, Prentice Hall, 2002.

Semester VII

Cou	irse	Co	de:
M	EN1	710	1

Renewable Energy

Credits: 3-0-2:4

Prerequisites: Basic knowledge of Energy Science.

Course Outcomes:

CO1	Students will able to understand the concept of energy crisis, Renewable energy resources,
	availability and their importance
CO2	Students will able to understand various methods to harness Renewable energy resources.
CO3	Students will able to apply the methods for better harness, conversion techniques, and
	utilization of Renewable energy resources.
CO4	Students will able to analyse various problems, limitations, complexities and performances
	of power plants based on Renewable energy resources.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	2	2	2	3	3	2
CO2	3	3	2	2	2	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Unit	Details	No. Hrs
1	Introduction: The energy crisis – causes and options, various conventional and non- conventional forms of energy and their characteristics, availability of non- conventional energy and land area requirements.	4
2	Solar energy: Introduction, Solar radiation, Sun-Earth angles, Measurement of solar radiation at the earth's surface, Types of collectors such as flat-plate and concentrating collectors, solar thermal power generation, solar ponds and energy storage. Principle of Solar photovoltaic, materials, mono-crystalline, polycrystalline and amorphous silicon cells and their production technology, I-V characteristics, parameters of performance, modules, array and PV plant configurations and power generation.	4
3	Biomass energy: Introduction, Incineration, Thermo-chemical and biochemical conversion to solid, liquid and gaseous fuels; Production technologies for bio-ethanol, biogas and producer gas, Urban waste to energy processes.	6
4	Ocean, Wave and Tidal energy: Introduction, Ocean thermal energy conversion (OTEC) – closed and open cycles and their limitations, Wave energy and its conversion processes, Tidal energy – nature of the tides and tidal barrages for power generation	6
5	Wind energy: Fundamentals, power in the wind, site selection, maximum power coefficient, wind turbine and its types – horizontal axis and vertical axis machines, performance of wind machines, wind energy farms.	6
6	Geothermal energy: Introduction, Geothermal energy resources, Hot aquifers and hot dry rock systems, geothermal electric power plants.	4

Text Books:

1 Renewable Energy Sources and D.P. Kothari, K.C. PHI Learning Pvt. Ltd., Emerging Technologies

Technology 2 Energy (Non Conventional, Renewable And Conventional)

References:

1	Solar Energy-Fundamentals, Design, Modeling & Applications'	G.N. Tiwari	Narosa Publishing House, New Delhi, India
2	Advanced Renewable Energy	G.N. Tiwari and R.K.	RSC Publishing,
	Sources	Mishra	Cambridge, U.K
3	Biogas Systems: Principles and	K.M Mittal	New Age International
	Applications		Limited Publishers.
4	Wind Energy Come of Age	Gipe P	John Wiley and sons, New
		•	York.
5	Solar Energy Fundamentals	S. Kalogirou	Academic Press
6	Solar Photovoltaics:	C.S. Solanki	PHI Learning Pvt. Ltd.,
	Fundamentals Technologies and		New Delhi
	Applications		

Singal and R. Ranjan

S. Rao, BB Parulekar

<u>##</u>

Department of Mechanical Engineering

New Delhi

Khanna Publishers

Module	Name of Experiment	Duration
1	Measurement of beam radiation, diffused radiation, global radiation, relative	2
	humidity of air, velocity of air and light intensity.	
2	Measurement of Overall current-voltage characteristic of two crystalline solar	2
	cell connected in series and parallel	
3	Measurement of daylight and artificial light intensity at various points in a	2
	room and plot the graph.	
4	Synthesis of bio-fuels and quality measurement.	2
5	Estimation of the calorific value of bio-fuels (solid, liquid and gas) in Bomb	2
	calorimeter.	
6	Study and Performance analysis of wind turbines.	2
7	Study and Design of Towers and Blades Structures.	2

Text Books:

- 1. Renewable Energy Sources and Emerging Technologies by D.P. Kothari, K.C. Singal and R. Ranjan, PHI Learning Pvt. Ltd., New Delhi
- 2. Non Conventional Energy Sources by G.D. Rai 2004, Khanna Publishers.
- 3. Energy Technology (Non Conventional, Renewable and Conventional) by S. Rao, BB Parulekar 1994, Khanna Publishers.
- 4. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.

REFERENCES

- 1. 'Solar Energy-Fundamentals, Design, Modeling & Applications' by G.N. Tiwari 2002, Narosa Publishing House, New Delhi, India.
- 2. Advanced Renewable Energy Sources by G.N. Tiwari and R.K. Mishra 2012, RSC Publishing, Cambridge, U.K.
- 3. Biogas Systems: Principles and Applications by K.M Mittal 1996, New Age International Limited Publishers, New Delhi.
- 4. Wind Energy Come of Age by Gipe P. 1995, John Wiley and sons, New York.
- 5. Solar Energy Fundamentals by S. Kalogirou, Academic Press.
- 6. Solar Photovoltaics: Fundamentals, Technologies and Applications by C.S. Solanki 2012, PHI Learning Pvt. Ltd., New Delhi.

Core Elective Courses - 6

Course Code:	
MEN17267	

Solar Energy and Applications

Credits: 3-0-0:3

Prerequisites: Heat and Mass Transfer, Energy Science.

Course Outcomes:

CO1	Understand the basics of solar energy including its production at the Sun, and collection at
	Earth surface.
CO2	Understand various methods to collect the solar energy and its measurement.
CO3	Applysolar energy to solve various technical problems overcoming their conventional
	methods for safely realization, betterment of mankind and to protect our planet from effects
	of climate change such as global warming.
CO4	Analyse the performances of various solar energy applications e.g. Thermal, Photovoltaic
	and Daylight

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2	2	2	2	2	2	3	3	2
CO2	3	2	2	2	3	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	2	3	3	3

Unit	Details	No. Hrs
1	Introduction: Energy saving and Protection of Environment, The Sun, The Earth, Solar spectrum. Global warming and it's effect, Importance of Solar Energy. Solar energy systems and It's types: Active and Passive. A brief overview of various applications of solar energy.	4
2	Solar Radiation: Types of Solar radiation (Terrestrial and Extra-terrestrial regions, Beam radiation, Diffuse radiation), Air mass, Albedo, Irradiance. Attenuation, Sun- Earth Angles, Solar time, Solar radiation on inclined surface and horizontal surface, Measuring Instruments for solar radiation e.g. Pyrheliometer, Pyranometer, Sun- shine recorder.	4
3	Solar Water Heating: Introduction (need & working principle), Heat and mass transfer mechanism, Types of solar water heating systems, Basic energy balance equations, Efficiency and Performance. Solar Air Heating/Cooling: Introduction (need & working principle), Heat and mass transfer mechanism, Types of solar air heating and cooling systems, Basic energy balance equations, Efficiency and Performance.	6
4	Solar Distillation: Introduction (need & working principle), Heat and mass transfer mechanism, Types of solar distillation systems, Basic energy balance equations, Efficiency and Performance. Solar Passive house: Concept of passive house, Solar architecture, Principles of making a solar passive house. Daylight and its Use.	6
5	Photovoltaics: Introduction, Materials and Doping, Fermi level, p-n junction & its	6

-		
	characteristics, Photovoltaic effect, Solar Cell, Module, Array and PV Plant, Solar	
	cell efficiency, Fill factor, Packing factor, Hybrid PV-T applications- a brief study.	
6	Other applications of solar energy: A brief study of Solar cooking, Solar Aquaculture, Solar Greenhouse, Solar cooling, Solar Thermal Power Generation	4
	plant etc.	

Text l	Books:
--------	--------

1	Solar Energy – Fundaments, Design, Modeling & Applications	G.N. Tiwari	Narosa Publications.
2	Solar Energy	S P Sukhatme, J K Navak	McGraw-Hill Publications
3	Solar Photovoltaics: Fundamentals, Technologies And Applications	C. S. Solanki	PHI Publications
Refe	rences:		
1	Solar Energy Engineering	S. Kalogirou	Academic Press
2	Solar Photovoltaic Technology and Systems-A manual for technicians, Trainers and Engineers	S. Solanki	PHI Publications
3	Solar Engineering of Thermal Processes	John A. Duffie, William A. Beckman	John Wiley and sons, New York.
4	Principles of Solar Energy	Frank Krieth& John F Kreider	John Wiley and sons, New York.

Course Code:	Enougy Monogoment	Credits:
MEN17402	Energy Management	3-0-0-3

Prerequisites: Physics, Thermodynamics

Course Outcomes:

CO1	Develop an understanding of the energy-economy-environment nexus.
CO2	Use the techniques of energy auditing and benchmarking in the industrial sector.
CO3	Acquire basic knowledge of sustainable energy technologies and their applications.
CO4	To carry out techno-economic feasibility of energy conservation opportunities in different
	sectors of the economy.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	2	-	3	3	-	-	-	-	3	3	-
CO2	3	3	-	3	3	-	-	-	-	-	-	-	3	3
CO3	3	3	-	3	-	-	3	-	-	-	-	-	3	2
CO4	-	-	3	-	3	-	3	-	3	3	3	-	-	3

Unit	Details	No.
0		Hrs
	Introduction: Energy supply and demand, energy linked environmental crises-	5
1	causes and options in the present scenario of global warming, Energy classification:	
	renewable and non-renewable forms of energy and their characteristics.	
C	Energy-economy-environment nexus: energy-economy link and factors affecting it,	3
2	net energy, gross pollution and growth constraints.	
	Energy auditing and benchmarking: Process and gross energy requirements,	5
3	Carbon Footprint, Energy payback time, Identification of energy conservation	
	opportunities, Benchmarking and its parameters.	
	Technical options for emissions mitigation: Combined cycles, Combined heat and	12
	power systems (Co-generation and tri-generation systems); Combined cooling and	
4	power systems, energy efficiency through heat pumps; cascade refrigeration with	
4	V-C and V-A systems, Mechanical Vapor Recompression (MVR) systems, Energy	
	recovery in refrigeration and air-conditioning systems; District Cooling, Geo-	
	thermal heat pumps, Earth-air heat exchangers.	
~	Case studies from industrial/ commercial/ transport/ agricultural/ residential	5
5	sectors.	
6	Non-technical options for emissions mitigation: Energy rebound effect, Life	3
6	style/attitudinal changes, GDP vs. holistic growth.	

Text Books:

	Scheme and Syllabi	161	w.e.f.2022-23
2	Renewable Energy	Boyle et al	Oxford University Press
1	Energy Systems and Sustainability	Boyle et al	Oxford University Press

References:

1	Energy efficiency	Eastop and Croft	Longman Scie Technical	entific and
2	Bureau of Energy Efficiency (BEE)	Ministry of Power	Government of I	India
3	Our Choice	Al Gore	Bloomsbury Put	olishing
4	An Inconvenient Truth	Al Gore	Oscar	winning
5	Before the flood	Leonardo DiCaprio	documentary National documentary	Geographic

<u>##</u>

Smart Materials

MEN17266

3-0-0:3

Prerequisites: Material Science and Engineering, Mechanics of Materials & Composite materials

Course Outcomes:

CO1	Student will be able to understand the basics, role, types, design and mechanics of the smart
	materials.
CO2	Student will be able to understand the various characterization techniques for the smart
	materials.
CO3	Student will be able to design and develop the smart materials.
CO4	Student will be able to design the novel smart materials for advance applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	1	1	1	1			1	3	3	3
CO2	3	2	2	1	1	1	1	1			1	3	3	3
CO3	3	3	3	3	3	2	1	1			3	3	3	3
CO4	3	3	3	2	3	2	1	1			2	3	3	3

Unit	Details	No. Hrs
1	Introduction to Smart Materials: Overview of Smart Materials, Advantages and limitations, Applications, Types of smart materials, Piezoelectric Materials, Elecrostrictive Materials, Magnetostrictive Materials, Magneto electric Materials. Magnetorheological Fluids, Electroheological Fluids, Shape Memory Materials, Fiber-Optic Sensors.	6
2	Fabrication and characterization: Additive manufacturing, injection moulding, vapor deposition (PVD), vacuum bag molding process. X-ray diffraction (XRD), Raman scattering spectroscopy (RS), Secondary Ion Mass Spectrometer (SIMS), Transmission electron Microscopy (TEM), Fourier-transform infrared reflection (FTIR), Ultraviolet–visible (UV–Vis), Atomic force microcopy (AFM).	6
3	Ferroelectric materials: Piezoelectric materials- piezoelectric effect, Direct and converse, parameter definitions, Piezoceramics, Piezopolymers, Piezoelectric materials as sensors, Actuators and bimorphs	5
4	Shape memory materials : Shape memory alloys (SMAs), Shape memory effect, Martensitic transformation, One way and two-way SME, training of SMAs, binary and ternary alloy systems, Functional properties of SMAs.	5
5	Smart polymers and hydrogels : Thermally responsive polymers, Electroactive polymers microgels, Synthesis, Properties and Applications, Protein-based smart polymers, pH-responsive and photo-responsive polymers, Self-assembly, Molecular imprinting using smart polymers, Approaches to molecular imprinting, Drug delivery using smart polymers, Synthesis, Fast responsive hydrogels, Molecular recognition, Smart hydrogels as actuators, Controlled drug release, Artificial muscles, Hydrogels in microfluidics.	5
6	Smart systems for sustainable applications: Elastic memory composites, Smart	5

corrosion protection coatings, Self-healing materials, Sensors, Actuators, Transducers, MEMS, Deployment devices, Molecular machines, Nuclear Industries

Text Books:

1	Smart Structure and Materials	Brain Cu	ılshaw		Artech London	Hous	e –	Borton.
2	Smart Materials and Structures	M. V. Thompse	Gandhi on	and_B.So	Chapman New York	&	Hall,	London;
Re	ferences:							
1.	Electro ceramics: Materials, Proj	perties	A.J. M J.M-Her	Ioulson an bert	d Wiley/ (ISBN:	2nd 0471	Editio 497479	n,)).
2.	Piezoelectric Sensories: Force, Pressure, Acceleration and A Emission Sensors: Material Amplifiers	Strain, Acoustic ls and	G. Gaut	schi	Springe New (ISBN:3	r, York 35404	Berli 422595	n;)2)
3.	Piezoelectric Actuators and w Motors	vtrasonic	K.Uchin	0	Academ Boston, 0792393	nic Pu 199 8114	ıblisheı 7 (ISBI)	rs, N:

4. https://archive.nptel.ac.in/courses/112/104/112104251/

5. https://www.youtube.com/watch?v=yXHllowQntk

Course Code: MEN17260

Green Hydrogen and Alternative Fuels

Credits: 3-0-0:3

Prerequisites: Concepts of Thermodynamics, Fluid Mechanics and Heat Transfer

Course Outcomes:

CO1	Students will be able to explain basic concepts of hydrogen energy and advances in this
	technology
CO2	Students will be able to explain the different formation methods of hydrogen production and
	its associated challenges in its storage, transportation and safety.
CO3	Students will be able to explain the importance of bio energy in near future along with the
	conversion techniques of bio energy from biomass and bio waste.
CO4	Students will be able to identify the challenges in the dissemination of bio-energy to the
	mass and its design and technical aspects.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	1	1	1	-	-	2	1	-	3	3
CO2	3	2	2	1	-	-	1	-	-	2	-	-	2	1
CO3	2	3	1	3	2	-	2	-	-	3	1	-	2	2
CO4	3	3	2	3	1	1	3	1	1	2	1	2	3	3

No. Hrs	it Details	Unit
8	 Basics and types of hydrogen, its production technologies, hydrogen generation from fossil fuels, biomass and renewables by different methods, selection criteria for choosing the Electrolyzers. Hydrogen production from electrolysis method, its working principle, classification, criteria for choosing the materials, and different materials used in 	1
	this method.	
6	Hydrogen storage and transport, methods of hydrogen storage, characterization methods, challenges of materials and their solutions, selection criteria of nanomaterials, and different nanomaterials used in hydrogen storage. Safety issues	2
	associated with Hydrogen energy.	
7	Biomass, Broad Classifications, Compositions, Characteristics, Properties, Structural Components, Biomass Residues, Utilization through Conversion Routes: Bio chemical and Therma Chemical Bioconversion into Biogos Machanism	3
6	Bio-chemical and Thermo Chemical, Bioconversion into Biogas, Mechanishi Bioconversion of Substrates into Alcohols and Bio diesels: Thermo-Chemical	
0	4 Conversion of Biomass, Conversion to Solid, Liquid and Gaseous Fuels, Pyrolysis, Gasification, Combustion, Chemical Conversion Processes.	4
6	Biogas Production and Characterization, Biogas Digesters, Parameters influencing	
	the biogas production, challenges with biogas technologies, Biogas Purification and	5
-	 Interfolds, challenges of materials and their solutions, selection criteria of nanomaterials, and different nanomaterials used in hydrogen storage. Safety issues associated with Hydrogen energy. Biomass, Broad Classifications, Compositions, Characteristics, Properties, Structural Components, Biomass Residues, Utilization through Conversion Routes: Bio-chemical and Thermo Chemical, Bioconversion into Biogas, Mechanism Bioconversion of Substrates into Alcohols and Bio diesels; Thermo-Chemical Conversion of Biomass, Conversion to Solid, Liquid and Gaseous Fuels, Pyrolysis, Gasification, Combustion, Chemical Conversion Processes. Biogas Production and Characterization, Biogas Digesters, Parameters influencing the biogas production, challenges with biogas technologies, Biogas Purification and upgradation techniques, compressed biogas technologies 	2 3 4 5

Text Books:

Scheme and Syllabi

T and a state			
1	Hydrogen and Fuel Cells:	Bent Sorensen	Academic Press
	Applications		
2	Biomass Gasification.	Prabir Basu.	Elsevier
	Pyrolysis and Torrefaction,	,	
3	Renewable Energy Resources	Twidell, J. and Tony W.,	Taylor & Francis
Dofor			
Refer	rences:		
1	Hydrogen Energy	Bahman Zohuri	Springer Singapore
	Challenges and Solutions for		
	a Cleaner Future		
2	Biomass Gasification and	Prabir Basu	Elsevier
	Pyrolysis		
	Practical Design		
3	Biogas Technology	Liangwei Deng, Yi Liu,	Springer Singapore
		Wenguo Wang	

<u>##</u>

Course Code:	
MEN17264	

Mechanics of Composite Materials

Scheme and Syllabi

Prerequisites: Mechanics of Materials, Material science and engineering

Course Outcomes:

CO1	Students will be able to analyze the mechanical behaviour of composite materials over isotropic materials.
CO2	Students will be able to apply constitutive equations of composite materials and understand mechanical behaviour at micro and macro levels.
CO3	Students will be able to determine the stresses and strains relation in composites materials.
CO4	Students will be able to predict the failure of the lamina and laminates composites

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1	2	1	1	1	-	-	-	3	3	3
CO2	3	2	2	1	1	1	2	1	-	-	-	3	3	3
CO3	3	3	3	2	3	2	1	1	-	-	-	3	3	3
CO4	3	3	3	2	3	2	1	1	-	1	-	3	3	3

Unit	Details										
1	INTRODUCTION TO COMPOSITE MATERIALS: Introduction, Classification: Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites, nature-made composites, and applications. Fibres- Glass, Silica, Kevlar, carbon, boron, silicon carbide, and born carbide fibres. Particulate composites, Polymer composites, Thermoplastics, Thermosetts, Metal matrix and ceramic composites.										
2	ELASTIC BEHAVIOR OF COMPOSITE LAMINA USING MICROMECHANICS: Introduction, Strength of Materials Approach, Semi-Empirical Models, Elasticity Approach, Volume and Mass Fractions, Density, and Void Content, Evaluation of the Four Elastic Moduli, Ultimate Strengths of a Unidirectional Lamina	6									
3	ELASTIC BEHAVIOR OF COMPOSITE LAMINA USING MACROMECHANICS: Introduction, Definitions: Stress, Strain, Elastic Moduli, Strain Energy, stress-strain relations for general anisotropic materials, specially orthotropic materials, transversally isotropic materials, orthotropic material under plane stress and isotropic materials, relations between mathematical and engineering constants.	6									

4	ELASTIC BEHAVIOR OF MULTIDIRECTIONAL LAMINATES: Basic assumptions, laminate code, strain-displacement relations, stress-strain relations of a layer within a laminate, force and moment resultants, Laminate stiffness and laminate compliance, symmetric laminates, balance laminates	6
5	FAILURE ANALYSIS AND DESIGN OF LAMINA: Strength Failure Theories of an Angle Lamina: Maximum Stress Failure Theory Strength Ratio, Failure Envelopes, Maximum Strain Failure Theory, Tsai–Hill Failure Theory, Tsai–Wu	7
6	FAILURE ANALYSIS AND DESIGN OF LAMINATES: Introduction, Special Cases of Laminates, and Failure Criterion for a Laminate, and Design of a Laminated Composite	6

Text Books:

1	Engineering Composite Mate	Mecha erials	anics of	Isaac and M Daniel,	Oxford University Press
2	Analysis and pe Composites	erforma	nce of fibre	B. D. Agarwal and L. J. Broutman	John Wiley & sons, New York
Refe	rences:				
1	Mechanics Materials	of	Composite	R. M. Jones	Mc Graw Hill Company, New York
2	Analysis of Lar Structures	ninated	l Composite	L. R. Calcote	Van Nostrand Rainfold, New York
3	Mechanics Materials	of	Composite	Autar K. Kaw	CRC Publication

Design against Fatigue and Fracture

Credits: 3-0-0:3

Prerequisites: Material Science and Engineering, Mechanics of Materials

Course Outcomes:

CO1	Students will be able tounder stand the concept of fracture mechanics in the design of
	products and systems.
CO2	Students will be able to formulate the effect of cracks, flaws on mechanical behavior of
	components.
CO3	Students will be able to analyze and determine the effect of inherent/nucleated cracks and
	flaws under monotonic and fluctuating load conditions both analytically and experimentally.
CO4	Students will be able to predict the life of components under cyclic loading conditions and
	apply the knowledge in research and development activity for betterment of the society.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				3	3	3
CO2	3	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1				3	3	3
CO4	3	3	3	2	3	2	1	1				3	3	3

Unit	t Details					
		Hrs				
1	Stress concentration effect of flaws, Cracks as stress raisers; The Griffith energy	5				
1	balance, The energy release rate, Crack growth instability analysis and R-curve.					
	Stress analysis of cracks: Generalised In-plane Loading (Williams approach),	7				
	Westergaard stress function, Behaviour at Crack Tips in Real Materials; Effects of					
2	Cracks on Strength: Effect of Cracks on Brittle versus Ductile Behaviors. The					
	stress Intensity factor K. Crack tip plasticity. Fracture toughness K as a failure					
	criterion Trends of K_{LC} with material					
	Creek tip opening displacement (CTOD). The Leoptour integral Les a poplineer	6				
2	crack up opening displacement (CTOD), The J-contour integral, J as a nonlinear	0				
3	energy release rate, J as a Path-Independent Line Integral, J as a Stress Intensity					
	Parameter, Laboratory measurement of K _{IC}					
	Micro-mechanism of fatigue, Introduction, Fatigue Design Criteria : Infinite life	5				
4	design, safe life design, fail-safe design, Damage Tolerant Design, Fatigue Tests					
	and the stress-life (S-N) Approach.					
	Cyclic deformation and the strain-life $(\varepsilon - N)$ approach. Fundamentals of LEFM and	6				
	application to fatigue crack growth : LEFM concepts. Cyclic plastic zone size.					
5	fatigue crack growth mean stress effect. Experimental measurement of fatigue					
	crack growth					
	Estima from variable amplitude leading. Spectrum leading. Cumulative demage	6				
-	Fatigue from variable amplitude loading: Spectrum loading, Cumulative damage	0				
6	theories, Load interaction and sequence effects, cyclic counting method, crack					
	growth and life estimation methods.					

Text Books:

Scheme and Syllabi

1	Fracture Mechanics	Michael Janssen, Jan	Spon Press
		Zuidema and Russell	(Taylor & Francis
2	Metal Fatigue in Engineering	WannillR.I.StephensA.Fatemi,R.R.StephensandH.O.Fuchs	Group) John Wiley
Refer	ences:		
1	Fracture Mechanics: Fundamentals and Applications	T.L.Anderson	CRC Press
2	Fundamentals of Fracture Mechanics	J.F.Knott	Butterworths
3	Fatigue Damage, Crack Growth and Life Prediction	F.Ellyin	Chapman & Hall
4	Elementary Engineering Fracture Mechanics	D. Broek	Kluwer Academic
5	Fracture Mechanics with an introduction to micromechanics	Gross and Seelig	Springer
6	Elements of Fracture Mechanics	Prashant Kumar	Tata McGraw Hill
7	Deformation and Fracture Mechanics of Engineering, Materials	R.W. Hertzberg	John Wiley

Electric Vehicle Technology

Credits: 3-0-0:3

Prerequisites: Basic Electrical Engineering

Course Outcomes:

S.N.	Outcomes
CO1	Students will be able to understand about basics of electric vehicle.
CO2	Students will be able to understand about drives and control systems of electric vehicles.
CO3	Students will be able to select motor, battery, battery indication system for EV applications.
CO4	Students will be able to design battery charger for an EV.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	1	1	3	1	-	-	-	-	1	2	1
CO2	3	-	-	1	1	3	1	-	-	-	-	2	2	1
CO3	1	3	3	3	2	3	1	1	-	-	2	2	3	2
CO4	1	2	3	2	3	2	2	1	-	-	1	2	3	3

Unit	Details	No. Hrs
1	Introduction to Electric Vehicle: Types and working mechanisms of Electric Vehicles, Components of Electric Vehicles, Chassis /Battery/Charger/etc., Standard Materials and its properties for components used in ElectricVehicles, Frame and Chassis of Electric Vehicles, braking systems in EVs, planetary gears, clutches, differentials, all-wheel drive regenerative braking mechanisms, Brake strategies (Series and Parallel), Braking torque distribution principle, electro-mechanical hybrid braking system.	10
2	Energy Storage Systems (ESS): Types of Batteries, their working mechanisms and characteristics, Applications of Batteries and ultracapacitors in Electric Vehicles, Comparison between different cell chemistry w.r.t. specific power, specific energy, safety, lifespan, performance, cost etc.	7
3	Analysis of ESS: Battery design parameters for several Electric Vehicles, Battery Architecture, Battery passive components sizing, Isolation requirements, Manufacturing of batteries, Battery modelling, form cell to pack, Battery pack and design issues, Failures of batteries, Battery Pack Performance & Safety testing standards, Battery management systems, Overview of safety circuits like over voltage and under voltage protection, pre-charge circuit, isolation monitoring, HVIL (high voltage interlock loop), MSD (manual service disconnect), Fuses etc., Overview of favorable and unfavorable storage conditions, impact of temperature on batteries.	8
4	Mobility and Connectors: Various types of chargers and energy management strategies, Connected Mobility and Autonomous Mobility- Emobility. Connectors-Types of EV charging connector, North American EV Plug Standards, DC Fast	6

	Charge EV Plug Standards in North America, CCS (Combined Charging System),	
	CHAdeMO, Tesla, European EV Plug Standards,	
F	Drives for EV:Introduction to Electromagnetic Energy Conversion; Electric	5
	drivetrain system; System design considerations, rating and sizing of electric	
	drivetrain components; Machines and drives for traction and EVs: Permanent	
5	Magnet Synchronous Motor (PMSM), Permanent Magnet Brushless DC	
	motors(PMBLDCM), Switched reluctance motors, synchronous reluctance motor,	
	induction motor (IM); Control of Electric Drives; Bidirectional DC-DC converters.	

Text Books:

1	Electric Vehicle Technology Explained	James Larminie, John Lowry	John Wiley & Sons, Ltd.
2	Electric and Hybrid Vehicles: Design Fundamentals	Iqbal Husain	Iqbal Husain
Refe	rences:		
1	Electric Vehicles: Modern Technologies and Trends	Nil Patel, Akash Kumar Bhoi, Sanjeevkumar Padmanaban, Jens Bo Holm-Nielsen	Springer Singapore
2	Battery Management Systems of Electric and Hybrid Electric Vehicles	Nicolae Tudoroiu (editor)	MDPI AG
3	Heavy-Duty Electric Vehicles: From Concept to Reality	Shashank Arora, Alireza Tashakori Abkenar, Shantha Gamini Jayasinghe, Kari Tammi	Butterworth- Heinemann
4	Rechargeable Lithium-Ion Batteries: Trends and Progress in Electric Vehicles	Thandavarayan Maiyalagan (editor), Perumal Elumalai (editor)	CRC Press

Course Code:	
MEN17251	

Prerequisites: Engineering Thermodynamics, Engineering Mechanics, Automobile engineering (basic course)

Course Outcomes:

CO1	Students will be able to identify different types of automobile structures, body components									
	and body interiors and how their design differ.									
CO2	Students will able to understand and analyze various chassis design and stability of									
	automobiles.									
CO3	Students will be able to identify various modern steering and suspension systems and will									
	able to analyze load associated with these systems.									
CO4	Students will able to analyze vehicle safety related issues and vehicle design parameters that									
	leads to increased safety and methods to reduce vehicle noise.									

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	2	3	3	2	1	2	-	2	2	2
CO2	3	2	2	2	2	3	3	2	1	2	-	2	3	3
CO3	3	2	2	2	2	3	3	2	1	2	-	2	3	3
CO4	3	2	2	1	2	3	3	2	1	2	-	2	3	2

Unit	Details	No. Hrs
1	Introduction and overview –Beginnings Growth and refinement	4
2	Vehicle Structure, Body Components and Body Interiors: Basic requirement of stiffness and strength Vehicle structure types, Demonstration of Simple Structural Surfaces (SSS), Bumpers, Grilles, Sill covers and side air bags, outer moldings, Weather strips, Glass and Mirrors, Seat Belt Restraint system-Air-Bag, components of Air- Bag, Dash Board	8
3	Chassis : Vehicle and body centre of gravity and handling properties, axle weight and axle centre of gravity, body weight and body centre of gravity, Braking behavior –stability, anti dive control, traction behavior.	8
4	Steering and Suspension systems: types-limitations. Hydraulic, electro hydraulic and electrical power steering, steering column, steering damper. Vehicle weights and axle loads, Shock absorbers, spring damper units, roll center analysis, load due to gyroscopic force on suspension, total load on suspension.	8
5	Automotive vehicle safety, Testing and Noise Control: basic concepts of vehicle safety, techno legal issues- ethics, testing of automotive components, failure investigations, safety factors, designs for uncertainty, crash testing. Interior noise, Engine noise, Road noise, wind noise, brake noise, Interior noise: Assessment and control	8

Text Books:

1	The Motor	Vehicle
-		

Newton and Steed

Butterworth-Heinemann

Scheme and Syllabi

References:

Department of Mechanical Engineering

- Vehicle Body Engineering Tire and Vehicle Dynamics 2
- 3
- Automotive vehicle safety 4

J. Powloski Hans B Pacejka George A Peters & CRC Press Barbara J Peters

Business Books Ltd Elsevier Ltd

Advanced Vehicle Technology	Heinz Heisler	Butterworth-Heinemann		
The Automotive Chassis	J. Reimpell, H Stoll	SAE International		
Automotive Engineering	Richard Stone and J K	SAE International		
Fundamentals	Ball			
Automotive Body	Lorenzo Morello	Springer		
Automotive Engineering (Power	David A Crolla	Elsevier collection		
Train, Chassis system and Vehicle				
Body)				
Road Vehicle Dynamics	Rao V Dukkipati	Springer		
Highway Design & Traffic Safety	Ruediger Lamm	McGraw-Hill Education		
Engineering Handbook				
The handbook of road safety	Rune Elvik,	Emerald Group		
measures	Truls Vaa,	Publishing		
	Alena Hoye,	-		
	Advanced Vehicle Technology The Automotive Chassis Automotive Engineering Fundamentals Automotive Body Automotive Engineering (Power Train, Chassis system and Vehicle Body) Road Vehicle Dynamics Highway Design & Traffic Safety Engineering Handbook The handbook of road safety measures	Advanced Vehicle Technology The Automotive ChassisHeinz Heisler J. Reimpell, H StollAutomotive FundamentalsEngineering BallRichard Stone and J K BallAutomotive BodyLorenzo Morello David A CrollaAutomotive Engineering (Power Train, Chassis system and Vehicle Body)David A CrollaRoad Vehicle Dynamics Highway Design & Traffic Safety Engineering HandbookRao V Dukkipati Ruediger LammThe handbook of road safety measuresRune Elvik, Truls Vaa, Alena Hoye,		

<u>##</u>

Michael Sorensen

Course Code: MEN17271

Vehicle Management System

Credits: 3-0-0:3

Prerequisites: Engineering Thermodynamics, Engineering Mechanics, Electrical Engineering and Automobile Engineering.

Course Outcomes:

CO1	Students will able to acquire an overview of automotive components, subsystems, and basics
	of Electronic Engine Control in today's automotive industry
CO2	Students will able to use available automotive sensors and actuators while interfacing with
	microcontrollers / microprocessors during automotive system design
CO3	Student will able to understand the networking of various modules in automotive systems,
	communication protocols and diagnostics of the sub systems.
CO4	Students will able to design and implement the electronics that attribute the reliability,
	safety, and smartness to the automobiles, providing add-on comforts and get fair idea on
	future Automotive Electronic Systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	3	2	1	2	1	3	2	2
CO2	3	3	3	2	2	2	2	2	1	2	1	3	3	2
CO3	3	3	3	2	2	2	3	3	1	1	1	3	3	3
CO4	3	3	3	2	2	2	3	3	1	1	1	3	3	3

Unit	Details	No. Hrs
1	Automotive Sensors & Actuators: Hall Effect, hot wire, thermistor, piezo electric, piezoresistive, based sensors. Introduction, basic sensor arrangement, types of sensors, oxygen concentration sensor, lambda sensor, crankshaft angular position sensor, cam position sensor, Mass air flow (MAF) rate, Manifold absolute pressure (MAP), Throttle plate angular position, engine oil pressure sensor, vehicle speed sensor, stepper motors, relays, detonation sensor, emission sensors.	10
2	Digital Engine Control System: Open loop and close loop control system, engine cooling and warm up control, idle speed control, acceleration and full load enrichment, deceleration fuel cutoff. Fuel control maps, open loop control of fuel injection and closed loop lambda control exhaust emission control, on-board diagnostics, diagnostics, future automotive electronic systems, Electronic dash board instruments – Onboard diagnosis system.	8
3	SI Engine Management: Feedback carburetor system, throttle body injection and multi point fuel injection system, injection system controls, advantage of electronic ignition systems, three way catalytic converter, conversion efficiency versus lambda. Layout and working of SI engine management systems like Bosch Monoj etronic, L-Jetronic and LH-Jetronic. Group and sequential injection techniques. Working of the fuel system components. Advantages of electronic ignition systems. Types of solid state ignition systems and their principle of operation, Contactless electronic ignition system, Electronic spark timing control.	10
4	CI Engine Management: Fuel injection system, parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced, post injection and retarded post injection. Electronically controlled Unit Injection system. Layout of the common rail fuel injection system. Working of components like fuel injector,	10

fuel pump, rail pressure limiter, flow limiter, EGR valve control in electronically controlled systems.

Text I	Books:		
1	Automobile Electrical & Electronic	Young, Griffitns	Butterworths, London.
	Equipments		
2	Understanding Automotive	Wiliam B. Ribbens	Butterworth–Heinemann
	Electronics		
3	Gasoline Engine Management	Robert Bosch	SAE Publications
4	Diesel Engine Management	Robert Bosch	SAE Publications
Refer	ences:		
1	Understanding Automotive	Bechfold	SAE
	Electronics		
2	Automobile Electronics	Eric Chowanietz	SAE
3	Automotive Computer & Control	Tomwather J. R., Cland	Prentice Inc. NJ
	System	Hunter	
4	Automobile Electrical &	Tom Denton	Allied Publishers Pvt. Ltd
	Electronic Systems		

Course Code:	Hybrid Electric and Eyel Cell Vehicles	Credits:
MEN17261	Hydriu Electric and Fuel Cell Venicles	3-0-0:3

Prerequisites: Engineering Thermodynamics, Material Science, Internal Combustion Engines, Automobile Engineering, Advanced Automobile Engineering

Course Outcomes:

CO1	Students will be able to understand and analyze different types of Fuel cells, its operation,
	and performance
CO2	Students will be able to quantify fuel cell processing using codes and standards.
CO3	Students will be able to comprehend basic concept of Hybrid and Electric traction.
CO4	Students will be able to understand the need and environmental importance of Hybrid
	technology and analyze it.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3	3	3	2	3	3	2	2	3	3	3	3
CO2	3	2	3	3	3	2	3	3	2	2	2	3	3	3
CO3	3	2	3	3	2	2	3	3	2	2	2	3	3	3
CO4	3	3	3	3	3	3	3	3	2	2	3	3	3	3

Unit	Details	No. Hrs
1	Fuel Cell Technology -Introduction to Electrochemistry, Unit Cells, Fuel cell stacking, Fuel cell Types (Polymer Electrolyte Fuel cell, Alkaline Fuel cell, Phosphoric acid Fuel cell, Molten carbonate fuel cell, and Solid oxide fuel cell), and Timeline of introduction of fuel cell technology in automobiles.	8
2	Fuel Cell Performance- Role of Gibbs free energy and Nernst Potential, Cell Energy balance, Cell efficiency, Performance variables, various mathematical models. Polymer Electrolyte Fuel cell-Cell Components, PEFC system Performance, Alkaline Fuel Cell-Cell component, Performance.	6
3	Introduction to Fuel cell Hybrids: Fuel cell Auxiliary Power Systems, Sample Calculations-Fuel cell Calculations, Fuel Processing Calculations for PEFC, AFC. Fuel cell related codes and Standards	6
4	Hybrid Electric Technology and Electric drive trains -Introduction, History, Environmental importance, Basic concept of Hybrid Traction, Basic concept of electric traction, Introduction of electric components used in electric vehicles. Principles of Hybrid Electric Drive trains, Architectures, Hybrid control Strategies – Parallel Hybrid, Series Hybrid – (Charge Sustaining, Charge Depleting), Low- Voltage Storage System.	8
5	Hybrid Vehicle Technology- Sizing the drive system: Matching the electric machine and the Internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, and supporting subsystems. Energy Management Strategies in hybrid and electric vehicles, Case Studies: Design of a Hybrid Electric Vehicle (HEV), Design of a Battery Electric Vehicle (BEV).	8

Text Books:

Scheme and Syllabi

1	Fuel	Cell	Technology	Hoog	gers, G., E	dr.	CRC Press
	Handboo	K					
2	Fuel Cell Systems Explained			Larm	Larminie, J. and Dicks,		John Wiley & Sons, Ltd
				A.			
3	Vehicular	r Elect	ric Power	Ali	Emadi,	Mehrdad	Marcel Dekker, Inc.
	Systems			Ehsa	ni. John M	I. Miller	
	5				,		

References:

1	Fuel Cell Handbook	EG&G Technical	National Energy Technology
		Services, Inc.	Laboratory
2	Electric and Hybrid Vehicles	Tom Denton	Institute of the Motor
			Industry

Course	Code:
MEN1	7253

Automotive Electronics

Credits: 3-0-0

Prerequisites: Automobile Engineering

Course Outcomes:

CO1	Understand the need of safety of electronics in automobiles, electronic circuit fundamentals
	and basic test equipment.
CO2	Analyse vehicle electronic circuits.
CO3	Outline the working of batteries, starting systems, charging systems, ignition systems and
	auxiliaries.
CO4	Understand the working of sensors and ECU

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	2	1	3	3	2	1	1	1	3	2	3
CO2	2	2	3	3	2	3	3	2	1	2	1	3	3	3
CO3	2	2	3	3	2	3	3	2	1	2	1	3	3	3
CO4	2	2	3	3	2	3	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	 Introduction: Overview of the course, Examination and Evaluation patterns, History of Automotive electronics. Safety and Communication: Safe working practices-work cloths, eye protection, fire protection, battery safety. Working as an electricity / electronics technician-your toolbox, access to wiring diagrams and repairs information, communicating with the customer, working around air bags. Circuit fundamentals and basic test equipment: voltage, current, resistance, circuits components, series and parallel circuits, purpose of voltmeters, measuring voltage drop, connecting the voltmeter, types of ammeters, current probes, reading and interpreting ohmmeter readings, continuity testing. 	6
2	 Vehicle circuits: circuit components, analysing series and parallel circuits, control circuits, diagnosing open and short circuits. Digital Storage Oscilloscope: voltage and time setting, DSO trigger and slope, using a current probe with DSO, using the DSO''s multiple-trace capability. Electronic fundamentals: solid state devices, electronic control input devices, diagnosing and servicing electronic control input devices, integrated circuits as input devices, diagnosing and servicing ICs, oxygen sensors, diagnosing and servicing oxygen sensors. 	8
3	 Wiring diagrams and Batteries: wiring diagram symbols, using the wiring diagram as aservice tool, automotive batteries, diagnosing batteries, servicing batteries. Starting and charging systems: starting circuits, solenoid shift starters, diagnosing and servicing solenoid shift starters systems, positive engagement starters, diagnosing and servicing positive engagement starting system, gearreduction starters, diagnosing system overview, field circuits, diagnosing and servicing the charging system. 	6
4	Ignition systems and accessories: secondary ignition systems, servicing the secondary ignition system, primary ignition system, diagnosing and servicing distributed primary ignition systems, distributor less ignition secondary circuits,	8

	diagnosing and servicing the secondary ignition system on a distributor less	
	vehicles, distributor less ignition primary circuits, diagnosing and servicing the	
	primary circuit on a distributor less ignition system. Lighting circuits, diagnosing	
	lighting circuits, defogger, horn, and windshield wiper circuits, diagnosing	
	defogger, horn, and windshield wiper circuits, motor driven accessories, diagnosing	
	motor driven accessories	
	Cooling of Electronics Equipment: Cooling load of electronics equipment,	
	thermal environment, Electronics cooling in automotive systems, air cooling, liquid	
5	cooling, and immersion cooling.	8
	Electronic control units and sensors: Vehicle sensors-speed, temperature, fuel	
	level, battery condition, emissions, feedback circuits.	

Text Books:

1	Automotive	Technology,	Al Santini	Cengage Publishers, 2011
	Electricity and l	Electronics		
2	Understanding	Automotive	William Ribbens	Elsevier
	Electronics, 6th	Edition		

Course Code:	Alternative Tuels Tealmalogy	Credits:
MEN17252	Alternative rules rechnology	3-0-0

Prerequisites: Engineering Thermodynamics, Internal Combustion Engines

Course Outcomes:

CO1	Students will able to understand about the various alternative fuels available and its
	properties
CO2	Students will able to determine various properties of bio fuels and their significance in IC
	engines.
CO3	Student will able to analyze the various gaseous alternative fuels for IC engine applications
CO4	Students will able to explain the concepts of Electric, Hybrid and Fuel Cell Vehicles.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	2	1	3	3	2	1	1	1	3	2	3
CO2	2	2	3	3	2	3	3	2	1	2	1	3	3	3
CO3	2	2	3	3	2	3	3	2	1	2	1	3	3	3
CO4	2	2	3	3	2	3	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	Need for alternate fuel: Availability and properties of alternate fuels, general use of alcohols, LPG, hydrogen, ammonia, CNG and LNG, vegetable oils and biogas, merits and demerits of various alternate fuels, introduction to alternate energy sources. Like EV, hybrid, fuel cell and solar cars	6
2	Alcohols as Fuels: Production methods of alcohols. Properties of alcohols as fuels. Methods of using alcohols in CI and SI engines. Blending, dual fuel operation, surface ignition and oxygenated additives. Performance emission and combustion characteristics in CI and SI engines.	8
3	Vegetable Oils and Biodiesel as Fuels: Various vegetable oils and their important properties. Different methods of using vegetable oils engines – Blending, preheating Transesterification and emulsification of Vegetable oils - Performance in engines – Performance, Emission and Combustion Characteristics in diesel engines.	6
4	Hydrogen, Biogas, Natural Gas and LPG as Fuels: Production methods of hydrogen. Combustive properties of hydrogen. Problems associated with hydrogen as fuel and solutions. Different methods of using hydrogen in SI and CI engines. Performance, emission and combustion analysis in engines. Hydrogen storage - safety aspects of hydrogen. Production methods of Biogas, Natural gas and LPG. Properties studies. CO ₂ and H ₂ S scrubbing in Biogas., Modification required to use in SI and CI Engines-Performance and emission characteristics of Biogas, NG and LPG in SI and CI engines.	8
5	Electric, Hybrid and Fuel Cell Vehicles: Layout of Electric vehicle and Hybrid vehicles – Advantages and drawbacks of electric and hybrid vehicles. System components, Electronic control system – Different configurations of Hybrid vehicles. Power split device. High energy and power density batteries – Basics of Fuel cell vehicles.	8

Text Books:

Scheme and Syllabi

- int			
1	Handbook of Alternative Fuel Technologies	Sunggyu Lee James G. Speight Sudarshan K. Loyalka	CRC Press, Taylor and Francis Group
2	Biodiesel Handbook	Gerhard Knothe, Jon Van Gerpen, Jargon Krahl	AOCS Press Champaign
3	Alternative Fuels: The Future of Hydrogen	Michael F. Hordeski	The Fairmont Press
4	Hybrid, Electric and Fuel- cell Vehicles	Delmar Cengage Learning	Delmar Cengage Learning
Refer	ences:		
1	Alternative Fuels and Advanced Combustion Techniques as Sustainable Solutions for Internal Combustion Engines	Akhilendra Pratap Singh, Dhananjay Kumar, Avinash Kumar Agarwal	Springer
2	Electric, Hybrid, and Fuel Cell Vehicles	Dr. Amgad Elgowainy	Springer Science
3	Transactions of SAE on Biofuels (Alcohols, vegetable oils, CNG, LPG, Hydrogen, Biogas etc.).		SAE Publication

Course Code:	Machina Learning	Credits:
MEN17263	Machine Learning	3-0-0:3

Prerequisites: NIL

Course Outcomes:

CO1	Student will be able to understand the fundamental issues and challenges of machine learning
CO2	Student will be able to understand a wide variety of learning algorithms
CO3	Student will be able to formulate and evaluate models generated from data
CO4	Student will be able to understand the strengths and weaknesses of various machine learning
	approaches.
CO5	Student will be able to design and implement various machine learning algorithm for real
	world problems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2	1	1	1	2	1	-	2	3	2
CO2	3	3	2	3	3	1	1	1	2	1	-	2	3	3
CO3	3	3	3	3	3	2	2	3	2	2	2	3	3	3
CO4	3	3	2	2	3	-	-	-	2	-	-	2	2	2
CO5	3	3	3	3	3	2	2	3	3	3	3	3	3	3

Unit	Details	No. Hrs
1	Basic Concepts: Machine Learning, Supervised learning, Unsupervised learning	3
2	Linear Regression with One Variable: Model representation, Cost function formulation, gradient descent for linear regression, Linear Regression with Multiple Variables: Model representation, Cost function formulation, gradient descent for multiple variables, features and polynomial regression, Logistic Regression: Classification, Hypothesis Representation, Decision Boundary, Cost Function, Simplified Cost Function and Gradient Descent, Multiclass Classification Regularization: Over fitting, Regularized linear and logistic regression	7
3	Neural Network Representation : Physiology of Human Brain, Models of Neuron, Network Architecture, Artificial Intelligence & Neural Network Single Layer Perceptrons: Least mean square algorithm, learning curves learning rate annealing techniques, Perceptron, Perceptron Convergence Theorem. Multi- Layer Feed forward Neural Networks: Multi-Layer Perceptrons, Back Propagation Algorithm, Generalization, Cross Validation, Network Pruning Techniques, Accelerated Convergence of Back Propagation Learning.	7
4	Radial Basis Function Networks: Radial Basis Function Networks, Cover's Theorem; Regularization Theory, Regularization Networks, Comparison of RBF Networks & Multilayer Perceptron.	4
5	Dimensionality Reduction: Hebbian based Principal Component Analysis Adaptive Principal Component Analysis using lateral inhibition; Kernel based Principal Component Analysis. Self Organizing Maps: Self Organizing Map, Properties of the feature Map; Learning Vector Quantization, Contextual maps.	5
6	Support Vector Machine: Large Margin Classification, Kernels, Using an SVM	5
7	Anomaly Detection: Developing and Evaluating an Anomaly Detection System,	4

Anomaly Detection vs. Supervised Learning, Choosing What Features to Use, Multivariate Gaussian Distribution Anomaly Detection using the Multivariate Gaussian Distribution

Text Books:

1	Neural Networks: A comprehensive	S. Haykin	Pearson Ed	ucation, Inc.
	Foundation			
2	Machine Learning: A Probabilistic Perspective	Kevin P.	MIT Press	
		Murphy		
Refer	ences:			
1	Introduction to artificial neural systems	Jacek M. Z	Zurada	Jaico Publishing
				House
2	The Elements of Statistical Learning	T. Hastie,	R.	Springer
	-	Tibshirani,	and J.	
		Friedman		
3	Pattern Recognition and Machine Learning	Christophe	er M.	Springer
	-	Bishop		
		-		

Course Code:	Commutar
MEN17256	Computer

Computer Integrated Manufacturing

Credits: 3-0-0:3

Pre-requisites: NIL

Course Outcome

S.N.	Outcomes
CO1	Understand and apply the basics of CAD-CAM to link with the present industrial requirement.
CO2	Identify the levels of integration and required devices for industrial automation and up graduation requirements.
CO3	Identify the parameters of capacity planning, manufacturing resource planning and their effects on current market trends.
CO4	Evaluate and apply the concepts of industry 4.0 environment and to develop business strategy on the basis of studied parameters.
CO5	Apply and analyse the required knowledge in developing business competencies, ethics and to develop strategy for dynamic customer's requirement.

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	3	1	1	-	2	-	1	1	3	3	3
CO2	2	2	3	3	3	2	3	1	1	1	1	2	3	3
CO3	3	3	3	3	1	-	-	2	2	3	-	3	3	3
CO4	3	3	3	3	1	2	2	2	2	3	1	3	3	3
CO5	3	3	3	3	2	2	2	1	2	3	2	3	3	3

Module	Content	No. Hr							
1	CIM Concepts: Manufacturing Enterprise: External and Internal Challenges,								
	world-class order-winning criteria, CIM- definition, SME manufacturing wheel,								
	CIM benefits and implementation steps; Manufacturing Systems: Classification,								
	elements or sections of a typical manufacturing organization.								
	Functions and Components of CIM System: Design process, concurrent								
	engineering, Concept of CAD/CAM and CIMS.								
2	Database and Communication in CIM System: Data Communication	6							
	technologies, Database Management technologies, Automated data collection in								
	shop floor.								
3	Planning and Scheduling Functions in CIM System: Aggregate Production								
	Planning (APP), Master Production Schedule (MPS), Material Requirement								
	Planning (MRP), Capacity Requirement Panning (CRP), Manufacturing								
	Resource Planning (MRP-II), Just-In-time Production Systems and Concept of								
	Enterprise Resource Planning (ERP).								
4	Group Technology and Cellular Manufacturing: Concept of Group Technology	9							
	and its Application, Classification and Coding Techniques; Clustering								
	Techniques and Cellular Manufacturing, Flexible Manufacturing Systems.								

	Computer-Aided Process Planning: Approaches – Variant and Generative, Feature Classification and Recognition; Process Classifications and Selections, Machines and Tool Selection, Setting Process Parameters, Process Sheet Documentation.	
5	Automated Material Handling Systems Industrial Robots, Conveyors, AGVs, Automatic Storage and Retrieval Systems. Introduction to Advanced Manufacturing Systems Introduction to Lean Manufacturing systems, Agile Manufacturing systems, Quick Response Manufacturing, Reconfigurable Manufacturing Systems, Holonic Manufacturing Systems, Agent-Based Manufacturing Systems, Web- based manufacturing, Virtual Manufacturing.	8

Reference Books:

- 1. James A. Rehg and Henry W. Kraebber, 2005. Computer-Integrated Manufacturing. Second Edition, Pearson Education (Singapore) private Ltd., Delhi.
- 2. Mikell P. Groover, 2005. Automation, Production Systems and Computer-Integrated Manufacturing. Second Edition, Pearson Education (Singapore) private Ltd., Delhi.
- 3. Nanua Singh, 1995, Systems Approach to Computer Integrated Design and manufacturing, John Wiley & Sons.

3-0-0

Prerequisites: Basic knowledge of science and engineering

Course Outcomes:

CO1	Students will be able to understand the concept of micro-electro-mechanical systems, its working
	principles and applications.
CO2	Students will be able to design, simulate and analyse the basic micro sensors and actuators in the micro
	system.
CO3	Students will gain the knowledge of the MEMS fabrication and manufacturing processes.
CO4	Students will be able to explore new design and applications of MEMS

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	1	1	1	1				1	2	2
CO2	3	2	2	1	1	1	1	1				3	3	3
CO3	3	3	3	2	3	2	1	1				1	1	1
CO4	3	3	3	2	3	2	1	1				2	2	1

Unit	Details	No. Hrs
1	Overview of Micro Electro Mechanical systems (MEMS): MEMS and Microsystem products: Microgears, Micromotors, Microturbines, Mirco-optical Components, Application of Microsystems in Automotive Industry, Application of Microsystems in other Industries: Health care, Aerospace, Industrial Products, Consumer Products, Telecommunications; Scaling Laws in Miniaturization	5
2	Working Principles of Microsystems: Microsensors, Microactuation, MEMS with Microactuators, Microactuators with Mechanical Inertia, Microfluidics, Case studies.	5
3	Engineering Science for Microsystems Design and Fabrication: Atomic structure of matter, Ions and Ionization, Molecular theory of matter and Intermolecular forces, Doping of semiconductor, Diffusion process, Plasma Physics, Electrochemistry, Case studies.	5
4	Materials for MEMS: Substrates and Wafers, Active substrate materials, Silicon and its compounds, polymers, packaging materials, Case studies.	5
5	Engineering Mechanics and thermo-fluid Engineering for Microsystems Design: Static bending of thin plates, Design theory of accelerometer, micro accelerometer, thin film mechanics: thermo mechanics, Fluid flow in micro conduits, Heat conduction in multilayered thin films and in solids at sub-micrometer scale, Case studies.	7
6	Fabrication and manufacturing Processes for Microsystems: Photolithography, Ion implantation, Diffusion, Oxidation, Chemical Vapour Deposition, Physical Vapour Deposition, Etching, Bulk micro manufacturing, Surface micro machining LIGA process, Case studies.	8

Scheme and Syllabi

1 MEMS and Microsystems: Design, Hsu, T.R Manufacture, and Nanoscale Engineering

John Wiley & Sons, Inc. New Jersey

References:

1	Fundamentals of Microfabrication	Madau, M. J.,	Taylor & Francis
2	Handbook of MEMS: Introduction and	Gad-el-Hak, M.	Taylor &Francis

Fundamentals

Scheme and Syllabi

Industrial Automation

Credits: 3-0-0

Prerequisites: Workshop and Manufacturing Process, Industrial Engineering

Course Outcomes:

CO1	Students able to understand the concepts of automations, automation strategy and advanced
	automation functions.
CO2	Students able understand the different components and tools for automation process
CO3	Students able to understand performances of different automated material handling and
	storage system
CO4	Students able to understand about the automated production and assembly lines, cellular and
	flexible manufacturing systems.
CO5	Students able to understand advanced manufacturing production planning and capacity
	planning system.

	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO	1	1				1	2	1	1	1	2	2	1	2
1														
CO	1	2	2	1	1	2	2	2	2	2	2	2	2	2
2														
CO	1	1	1	1	1	2	2	2	1	2	2	2	2	2
3														
CO	1		2	2	1	1	2	2	1	1	2	2	2	2
4														
CO	1	1	1	1		2	2	2	1	1	2	2	2	2
5														

Unit	Details	No. Hrs.						
1	Introduction: - need for automation - automation in production systems -	4						
	automation principles and strategies - hard and soft automation production system -							
	elements of advanced automation functions - levels of automation - modeling of manufacturing systems.							
2	Introduction to hydraulic, pneumatic, electric controls system majorcomponents,	7						
	symbols and accessories functions of hydraulic system - Design and application of							
	hydraulic circuits of machine tool, press, Mobile hydraulic.							
	Pneumatic system - pneumatic components and function- pneumatic components							
	symbols- Design and application of pneumatic circuits of machine tool.							
	Semi automats-automated-transfer lines - automatic assembly - transfer devices and							
	feeders' classifications and applications-job orienting and picking devices- setting							
	of automats and transfer lines. Introduction to Microprocessors and their							
	applications, Sensors and Principles, PLC system							
3	Material handling: Introduction, material handling systems and equipment -	7						
	principles and design, material transport system: transfer mechanisms and							
	equipments - automated feed cut of components, performance analysis, uses of							
	various types of handling systems including AGV and its various guiding							

	technologies. Overview of automatic identification methods.	
4	Storage system: introduction - storage system performance - location strategies - conventional storage methods and equipments - automated storage systems -	4
	analysis of storage systems.	
5	Automated manufacturing systems: Components, classification, overview of automated production lines – automated assembly systems, group technology and cellular manufacturing – flexible manufacturing cells and systems - components and applications.	6
6	Manufacturing support system: Process planning and concurrent engineering- process planning, CAPP, CE and design for manufacturing, advanced manufacturing planning, production planning and control system, master production schedule, MRP. Capacity planning, shop floor control, inventory control, MRP-II, J.I.T production systems. Lean and agile manufacturing	6
	Total Hours	34

Text Books:

10	AL DU	UNS.									
1	Auto Syste Integ	omation, ems an grated Manu	d 1factu	Production Computer tring	Mikell P. Groo	over	Prentice Hall India				
2	Intro auto	oduction mation	to	industrial	Manesis, Nikolakopoule	S., Ds, G	& CRC	Press			
Re	eferen	ices:									
	1	Power Hyd	drauli	cs			Michael Pinches a G	J. Ind John	Prentice Hall		
	2	Basic Fluid	d Pov	ver			Dudleyt A and Jo Pippenge	hn, J.	Prentice Hall		
	3	Assembly	y Aut	omation and	Product Design	1	Geoffrey Boothroy	ď			
	4	Product D	Design	ı for manufac	cture and Assen	nbly	Joffrey Boothroy Dewhurst Winston Knight	d, Peter and A.	CRC Press		
	5	Industrial A	Autor	nation: Hand	ls On		Frank La	mb			
	6	Industrial A	Autor	mation and C	Control				Nptel		

6 Industrial Automation and Control https://archive.nptel.ac.in/courses/108/105/108105062

$\boldsymbol{\alpha}$	$\mathbf{\alpha}$
OURCO	1 OC 01
Course	~~~~·

3-0-0

Prerequisites:

Course Objectives

- To have an increased awareness among students on issues in areas of sustainability.
- To understand the role of engineering and technology within sustainable development.
- To know the methods, tools, and incentives for sustainable product-service system development.
- To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, economic problems.

Expected outcome:

CO1	The student will be The student will be able to understand the different types of											
	environmental pollution problems and their sustainable solutions.											
CO2	The student will be The student will be able to work in the area of sustainability for research											
	and education.											
CO3	Students will have a broader perspective in thinking for sustainable practices by utilizing the											
	engineering knowledge and principles gained from this course.											

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	3	1	1	-	2	-	1	1	3	3	3
CO2	2	2	3	3	3	2	3	1	1	1	1	2	3	3
CO3	3	3	3	3	1	-	-	2	2	3	-	3	3	3

Unit	Details									
7	Sustainability- Introduction, Need and concept of sustainability, Social-environmental and economic sustainability concepts, Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols-Clean Development Mechanism (CDM), Environmental legislations in India-Water Act, Air Act.	4								
8	Air Pollution, Effects of Air Pollution- sources, Sustainable waste water treatment, Solid waste- sources, impacts of solid waste, Zero waste concept, 3R concept, Global environmental issues-Resources degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and	6								

- Mar		
	carbon trading, carbon foot prints.	
9	Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) – Scope and Goal, Bio-mimicking, Environment Impact Assessment (EIA) – Procedures of EIA in India.	4
10	Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport.	5
11	Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy.	5
12	Green Engineering, Sustainable Urbanization, industrialization and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.	5

Text Books:

Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.

References:

- Engineering applications in Bradley. A. S; Adebayo, Cengage learning sustainable Design and A. O., Maria, P. Development
- 2 Basic Concepts in Mackenthun, K. M. Lewis Publication, London, 1998 Environmental Management
- 3 Environment Impact Assessment Guidelines, Notification of Governments of India, 2006.
- 4 ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications- GRIHA Rating System.

5	System	Analysis	of	Ni bin Chang	McGraw-Hill Professional	
	Sustainable	Engineer	ring			
	Theory and	Applications				
6	Renewable	Energy Resour	ces	Twidell, J. W. and Weir, A. D.	English Language Book (ELBS).	Society
7	An approac	h for sustaina t	able	Purohit, S. S	Green Technology	

Course Code: MEN17269

Credits: Sustainable Materials and Green Buildings

3-0-0

Prerequisites: Basics concepts of green technology and sustainability, introduction to civil engineering building materials.

Course Outcomes:

CO1	Expose the students to the concepts of sustainability
CO2	Understand the concept of building and conventional engineered building materials
CO3	Understand the concept of conventional engineered building materials
CO4	Make student aware of various green building councils

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	1	2	3	2	1	1	1	3	3	3
CO2	2	2	2	2	2	2	2	2	1	2	1	3	2	3
CO3	2	1	2	3	2	2	3	2	1	2	1	3	3	2
CO4	2	2	3	3	2	3	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	Introduction to sustainability and green building: Introduction to sustainable materials and the concept of green building, Embodied energy and Operational energy in Building and Life cycle energy, Ecological footprint, Bio- capacity and calculation of planet equivalent.	8
2	Sustainable materials: Role of Material: Carbon from Cement, alternative cements and cementitious material, Alternative fuel for cements for reduction in carbon emission, Sustainability issues for concrete, Role of quality, minimization of natural resource utilization, High volume fly ash concrete, geo-polymer concrete etc. concrete with alternative material for sustainability.	8
3	Energy and resources consumption: Reduction in water consumption in concrete, recycled aggregate, Energy for grinding and crushing of cement, aggregate etc. and reduction. Operational energy in building role of materials and thermal conductivity. Clay Bricks, Types of kilns, Comparative energy performance, emission performance and financial performance, Indoor air quality.	8
4	Operational energy consumption: Paints, Adhesive and sealants for use in building, Volatile organic content (VOC) emission issues and indoor air quality for Sustainability and Health hazard. Operational energy reduction and net zero building, Optimization for design of building for energy efficiency and example of optimization through use of Evolutionary genetic algorithm.	8
5	Energy and resources balance: Radiation budget, Surface water balance, Effects of trees and microclimatic modification through greening. Use of Building Integrated Photo Voltaic (BIPV) and other renewable energy in buildings, basic concepts and efficiency.	8
6	Energy codes: ECBC requirement, Concepts of Overall Thermal Transfer Value (OTTV), Green Performance rating, requirements of Leadership in Energy and Environmental Design (LEED), Green Rating for Integrated Habitat Assessment (GRIHA) and Indian Green Building Council (IGBC).	8

Text Books:

Scheme and Syllabi

1911			
1	Sustainability Engineering:	Allen, D. T. and Shonnard,	Prentice Hall
	Studies	D. K.	
2	Engineering applications in sustainable design and	Bradley. A.S; Adebayo, A.O., Maria	Cengage learning
	development		
3	Environment Impact	Notification of	
	Assessment Guidelines	Government of India	
4	Basic Concepts in		Lewis Publication London
	Environmental Management	Mackenthun, K.M.	
5.	GRIHA Rating System	New Delhi Bureau of Energy Efficiency	Publications- Rating System TERI Publications

195

Course Code: MEN17254

Automotive Materials

Credits: 3-0-0

Prerequisites: Automobile Engineering

Course Outcomes:

CO1	Understand and select suitable materials for automotive applications
CO2	Distinguish between the materials requirements for automobiles interior and exterior
CO3	Understand and select advanced materials for specific automobile components.
CO4	Comprehend Ashby charts for material selection

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2	2	1	2	2	2	1	1	1	3	2	2
CO2	2	2	2	2	2	2	2	1	1	2	1	3	3	3
CO3	2	2	2	3	2	2	3	1	1	2	1	3	3	2
CO4	2	2	3	3	2	2	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	Introduction to Automotive Materials: Introduction to common engineering materials; metallic and non-metallic automotive materials. Materials and processes with relevance to automotive applications. Advanced materials, light weight material, nano material, and synthesis and in-situ materials for automotive applications, corrosion, Standards for automotive materials.	6
2	Materials For The Interior: Various high performance plastics and composites used in making of dashboards and their processing. Materials used in Flooring, dashboard silencer, headliner, door trim, baffles, rear shelf and their functionality. Car seat-considerations and materials used. Air bag materials used and their testing. Fabrics used in upholstery and their properties requirements	8
3	Materials For The Exterior: Application of various new materials including various types of composites in making of car bodies, bonnet, Alloy wheels and the processing method/s used to shape these parts. Reinforcement of fibres in composites - Woven fabrics - Non woven random mats - Various types of fibres in PMC processes - Hand lay-up processes - Spray up processes - Compression moulding - Reinforced reaction injection moulding -Resin transfer moulding - Filament winding - Injection moulding. Fibre reinforced plastics(FRP), Glass fibre reinforced plastics (GFRP)	8
4	Smart Concepts for Automobiles: Relevance of smart materials in the automobile industry, Recent developments in smart automobiles and Smart engines, Use of Electro- or magneto-rheological engine mounts. Engine blocks-cast iron, aluminium alloys. New trends in engines. Suspension systems: Use of MR fluids and ER fluids in dampers. Fuel Injector materials: high melting point materials-Use of ceramics as fuel injectors. Sintered Friction materials: Powder metallurgy process for making disc brake pads	6
5	Selection Of Materials: Introduction to Ashby charts for making a good selection of materials for different systems in automobiles. Case studies for materials developments by Ferrari, Land Rover, Honda, and FIAT in the making of a automobiles.	4

Text Books:

UZEU J					
1	Material	Selection	in	Michel F Ashby	Butterworth Heinemann
	Mechanical	Design			
2	Automotive	Engineerin	g:	Cantor B, Johnston, Colin	Taylor & Francis
	Lightweight	, Functional ar	nd	Grant and Patrick	
	Novel Mate	rials			
3	Composite 1	materials		K.K Chawla	Springer - Verlag

Reference Books:

1	Material and Design: The	Michel F Ashby	Butterworth Heinemann		
	Art and Science of Material				
	Selection in Product Design				
2	Composite materials:	F.L. Mathews and R.D	Chapman and Hall, London,		
	Engineering and Science	Rawlings	England, 1st edition		
3	Composite materials	K.K Chawla	Springer - Verlag		

Course Code: MEN17255

Automotive Safety

Credits: 3-0-0

Prerequisites: Automobile Engineering

Course Outcomes:

CO1	Identify safety systems necessary for automobiles
CO2	Understand active and passive safety systems
CO3	Design and develop automobile safety systems
CO4	Design and develop automobile comfort and convenience systems.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2	2	1	3	3	2	1	1	1	3	2	3
CO2	2	2	3	2	2	2	2	2	1	2	1	3	3	3
CO3	2	2	2	3	2	2	3	2	1	2	1	3	3	3
CO4	2	2	3	3	2	3	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	Introduction: Design of the body for safety, energy equation, engine location, deceleration of vehicle inside passenger compartment, deceleration on impact with stationary and movable obstacle, concept of crumble zone, safety sandwich construction.	6
2	Safety Concepts: Active safety, driving safety, conditional safety, perceptibility safety, operating safety, passive safety: exterior safety, interior safety, deformation behaviour of vehicle body, speed and acceleration characteristics of passenger compartment on impact.	8
3	Safety Equipment's: Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, tiltable steering wheel, air bags, electronic system for activating air bags, bumper design for safety	6
4	Collision Warning And Avoidance: Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system interactions	8
5	Comfort And Convenience System: Steering and mirror adjustment, central locking system, Garage door opening system, tyre pressure control system, rain sensor system, environment information system.	8

Text Books:

1	Automotive Hand	lbook	Bosch	SAE publication
2	Automotive	Mechanics	Ed May	McGraw Hill Publications
	Volume One			
3	Automotive	Mechanics	Ed May	McGraw Hill Publications
	Volume Two			

Course Code: MEN17270

Vehicle Maintenance

Credits: 3-0-0

Prerequisites: Automobile Engineering

Course	Outcomes:
--------	-----------

CO1	Understand and diagnose engine maintenance and its trouble shooting.
CO2	Understand and diagnose the transmission and driveline maintenance
CO3	Understand and diagnose the steering, braking, suspension and wheel maintenance and its
	trouble shooting.
CO4	Understand and diagnose air conditioning and electrical systems maintenance

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	2	2	2	1	2	3	2	1	1	1	3	3	3
CO2	2	2	2	2	2	2	2	2	1	2	1	3	2	3
CO3	2	1	2	3	2	2	3	2	1	2	1	3	3	2
CO4	2	2	3	3	2	3	3	2	1	2	1	3	3	3

Unit	Details	No. Hrs
1	Engine And Engine Subsystem Maintenance : Service of basic engine parts, cooling and lubricating system, fuel system, Intake and Exhaust system, electrical system - Electronic fuel injection and engine management service - fault diagnosis-servicing emission controls	6
2	Transmission And Driveline Maintenance: Clutch- general checks, adjustment and service- Dismantling, identifying, checking and reassembling transmission, transaxle- road testing- Removing and replacing propeller shaft, servicing of cross and yoke joint and constant velocity joints- Rear axle service points- removing axle shaft and bearings- servicing differential assemblies- fault diagnosis.	8
3	Steering, Brake and Suspension Maintenance: Inspection, Maintenance and Service of Hydraulic brake, Drum brake, Disc brake, Parking brake. Bleeding of brakes. Inspection, Maintenance and Service of Mc person strut, coil spring, leaf spring, shock absorbers. Dismantling and assembly procedures. Maintenance and Service of steering inkage, steering column, Rack and pinion steering, Recirculating ball steering service- Worm type steering, power steering system	6
4	Wheel Maintenance: Wheel alignment and balance, removing and fitting of tyres, tyre wear and tyre rotation. Inspection.	4
5	Auto Electrical And Air Conditioning Maintenance: Maintenance of batteries, starting system, charging system and body electrical -Fault diagnosis using Scan tools. Maintenance of air conditioning parts like compressor, condenser, expansion valve, evaporator - Replacement of hoses- Leak detection- AC Charging- Fault diagnosis Vehicle body repair like panel beating, tinkering, soldering, polishing, painting.	8

Text Books:

Scheme and Syllabi

1	Automotive Handbook	Bosch	SAE publication
2	Automotive Mechanics Volume	Ed May	McGraw Hill Publications
	One		
3	Automotive Mechanics Volume	Ed May	McGraw Hill Publications
	Two		
4	Crashworthiness of Vehicles	W. Johnson and A.G	MEP, London
		Mamalis	

Open Elective Course

Course Code:	
MEN17403	

Non-conventional Energy Sources

Credits: 3-0-0:3

Pre-requisites: NIL

Course Outcomes:

CO1	Understand the concept of energy crisis, non-conventional energy resources, availability and							
	their importance.							
CO2	Understand various methods to harness non-conventional energy resources.							
CO3	Apply the methods for better harness, conversion techniques, and utilization of non-							
	conventional energy resources.							
CO4	Analyse various problems, limitations, complexities and performances of power plants based							
	on non-conventional energy resources.							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	3	3	3	2	2	2	3	3	2
CO2	3	3	2	2	2	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Unit	Details	No. Hrs
1	Introduction: The energy crisis – causes and options, various conventional and non- conventional forms of energy and their characteristics, availability of non- conventional energy and land area requirements.	4
2	Solar energy: Introduction, Solar radiation, Sun-Earth angles, Measurement of solar radiation at the earth's surface, Types of collectors such as flat-plate and concentrating collectors, solar thermal power generation, solar ponds and energy storage. Principle of Solar photovoltaic, materials, mono-crystalline, polycrystalline and amorphous silicon cells and their production technology, I-V characteristics, parameters of performance, modules, array and PV plant configurations and power generation.	6
3	Biomass energy: Introduction, Incineration, Thermo-chemical and biochemical conversion to solid, liquid and gaseous fuels; Production technologies for bio-ethanol, biogas and producer gas, Urban waste to energy processes.	5
4	Ocean, Wave and Tidal energy: Introduction, Ocean thermal energy conversion (OTEC) – closed and open cycles and their limitations, Wave energy and its conversion processes, Tidal energy – nature of the tides and tidal barrages for power generation.	5
5	Wind energy: Fundamentals, power in the wind, site selection, maximum power coefficient, wind turbine and its types – horizontal axis and vertical axis machines, performance of wind machines, wind energy farms.	5
6	Geothermal energy: Introduction, Geothermal energy resources, Hot aquifers and hot dry rock systems, geothermal electric power plants.	4

7	Other Technologies: Magnetohydro	dynamics (MHD) E	nergy conversion, Fuel 4
/	Cells, Nuclear Energy, Hydrogen, Me	thanol, Energy Storag	ge.
Text	Books:		
1	Renewable Energy Sources and	D.P. Kothari, K.C.	PHI Learning Pvt. Ltd., New
	Emerging Technologies	Singal and R.	Delhi
		Ranjan	
2	Solar Energy-Fundamentals, Design,	G.N. Tiwari	Narosa Publishing House, New
	Modeling & Applications'		Delhi, India
D.£			
Keier	ences:		
1	Advanced Renewable Energy	G.N. Tiwari and	RSC Publishing, Cambridge,
	Sources	R.K. Mishra	U.K
2	Biogas Systems: Principles and	K.M Mittal	New Age International Limited
	Applications		Publishers.
3	Wind Energy Come of Age	Gipe P	John Wiley and sons, New
			York.
4	Solar Energy Fundamentals	S. Kalogirou	Academic Press
5	Solar Photovoltaics: Fundamentals	C.S. Solanki	PHI Learning Pvt. Ltd., New
_	Technologies and Applications		Delhi
6	Energy Technology (Non	S. Rao, BB	Khanna Publishers
	Conventional, Renewable And	Parulekar	
	Conventional)		

Course Code: MEN17402	Energy Management	Credits: 3-0-0-3

Pre-requisites: NIL

Course	Lourse Outcomes:							
CO1	Develop an understanding of the energy-economy-environment nexus.							
CO2	Use the techniques of energy auditing and benchmarking in the industrial sector.							
CO3	Acquire basic knowledge of sustainable energy technologies and their applications.							
CO4	Undertake case studies in energy management in different sectors of the economy.							

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	-	2	-	3	3	-	-	-	-	3	3	-
CO2	3	3	-	3	3	-	-	-	-	-	-	-	3	3
CO3	3	3	-	3	-	-	3	-	-	-	-	-	3	2
CO4	-	-	3	-	3	-	3	-	3	3	3	-	-	3

Unit	Details	No. Hrs
	Introduction: Energy supply and demand, energy linked environmental crises-	5
1	causes and options in the present scenario of global warming, Energy classification:	
	renewable and non-renewable forms of energy and their characteristics.	
2	Energy-economy-environment nexus: energy-economy link and factors affecting it,	3
2	net energy, gross pollution and growth constraints.	
	Energy auditing and benchmarking: Process and gross energy requirements,	5
3	Carbon Footprint, Energy payback time, Identification of energy conservation	
	opportunities, Benchmarking and its parameters.	
	Technical options for emissions mitigation: Combined cycles, Combined heat and	12
	power systems (Co-generation and tri-generation systems); Combined cooling and	
4	power systems, energy efficiency through heat pumps; cascade refrigeration with	
4	V-C and V-A systems, Mechanical Vapor Recompression (MVR) systems, Energy	
	recovery in refrigeration and air-conditioning systems; District Cooling, Geo-	
	thermal heat pumps, Earth-air heat exchangers.	
5	Case studies from industrial/ commercial/ transport/ agricultural/ residential	5
3	sectors.	
6	Non-technical options for emissions mitigation: Energy rebound effect, Life	3
0	style/attitudinal changes, GDP vs. holistic growth.	

Text Books:

1	Energy	Systems	and	Boyle et al.	Oxford University Press
	Sustainability	у			
2	Renewable E	Energy		Boyle et al.	Oxford University Press

References:

1	Energy efficiency	Eastop	and	Longman	
		Croft		Scientific	and
				Technical	
2	Bureau of Energy Efficiency (BEE)	Ministry	of	Government	of
		Power		India	
3	Our Choice	Al Gore		Bloomsbury	
				Publishing	
4	An Inconvenient Truth	Al Gore		Oscar win	ning
				documentary	7
5	Before the flood	Leonardo		National	
		DiCaprio		Geographic	
				documentary	7

Product Design and Development

Credits: 3-0-0: 3

Prerequisites: NIL

Course Outcomes:

CO1	Students will be able to visualize different products lying in the same category –but that has been designed covering different set of needs.
CO2	Students will be able to feel themselves more knowledgeable- at the end of the course.
CO3	Students will be able to identify needs and be able to suggest different alternative solutions
	considering cost constraints.
CO4	Students will be able to have a watchful eye on happenings in their surrounding for creative analyses. Possibility of taking up entrepreneurship activity, possibility of coming up with new ideas leading to IPR.

Course Articulation Matrix:

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO 11	PO1 2	PSO 1	PSO2
CO1	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO2	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO3	3	3	3	2	2	2	2	2	-	-	-	2	2	2
CO4	3	3	3	2	2	2	2	2	-	-	-	2	2	2

Unit	Details	No. Hrs
1	Introduction to Product Design, phases of product design: planning, concept	8
	development, system level design, detail design, testing, production ramp up.	
	Characteristics of successful product Development, Who designs & develops	
	products, Industrial & Practical Examples, Development Process & Organization, A	
	Generic Development Process	
2	Opportunity identification, product planning, Identifying Customer Needs, Product	10
	specifications, Concept Generation, Creative thinking- Invention- innovation &	
	inventiveness in a society, Concept Selection, prototyping methods	
3	Product Architecture, Industrial Design, Design for environment, Design for	10
	manufacturing	
4	Human Factors & System Information Input- Text graphics, symbols and codes,	7
	Human Factors Application - case studies, Work Place Design- case studies,	
	Human Errors - accidents and safety. Techno legal issues, Intellectual Property	
	Rights.	

Text Books:

1	Product	Design	and	Ulrich K. T, and Eppinger S.	McGraw Hill
	Development,			D	

References:

1	Mechanical Design Process	David G	McGraw Hill
		Ullman	
2	Product Design	Otto K, and	Pearson
		Wood K	
3	Engineering of creativity: introduction to TRIZ	Semyon D.	CRC Press
	methodology of inventive Problem Solving	Savransky	
4	Human Factors in Engineering Design	Mark S	McGraw Hill
		sanders &	Publishers.
		Ernst J. Mc	
		Cornick	
5	Product Design & Process Engineering	Benjamin W	McGraw Hill
		Nishel &	Publishers.
		Alan B	
		Draker	
6	Any other reference discussed in class for specific		

Any other reference discussed in class for specific topics.
Along with the above following is also desired:
An open mind to feel the quality in a system.
Subscription to a quality National news Paper/
Business news paper /magazines for articles on products technologies/ intellectual property acquired by specific firms etc. - Nationally and internationally.

MEN17401 Electric venicle reciniology	3-0-0:3
---------------------------------------	---------

Prerequisite: NIL

Course Outcomes:

CO1	Students will be able to understand about basics of electric vehicle.
CO2	Students will be able to understand about drives and control systems of electric vehicles.
CO3	Students will be able to select motor, battery, battery indication system for EV applications.
CO4	Students will be able to design battery charger for an EV.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	1	1	3	1	-	-	-	-	1	2	1
CO2	3	-	-	1	1	3	1	-	-	-	-	2	2	1
CO3	1	3	3	3	2	3	1	1	-	-	2	2	3	2
CO4	1	2	3	2	3	2	2	1	-	-	1	2	3	3

Unit	Details	No.
		Hrs
	Introduction to Electric Vehicle: Types and working mechanisms of Electric Vehicles, Components of Electric Vehicles, Changes (Changes (Action 1997))	10
	Metarials and its properties for components used in ElectricVehicles. From and	
1	Chassis of Electric Vahicles braking systems in EVs planetary gears clutches	
1	differentials all-wheel drive regenerative braking mechanisms Brake strategies	
	(Series and Parallel) Braking torque distribution principle electro-mechanical	
	hybrid braking system	
	Energy Storage Systems (ESS): Types of Batteries, their working mechanisms and	7
	characteristics. Applications of Batteries and ultracapacitors in Electric Vehicles.	
2	Comparison between different cell chemistry w.r.t. specific power, specific energy,	
	safety, lifespan, performance, cost etc.	
	Analysis of ESS: Battery design parameters for several Electric Vehicles, Battery	8
	Architecture, Battery passive components sizing, Isolation requirements,	
	Manufacturing of batteries, Battery modelling, form cell to pack, Battery pack and	
	design issues, Failures of batteries, Battery Pack Performance & Safety testing	
3	standards, Battery management systems, Overview of safety circuits like over	
	voltage and under voltage protection, pre-charge circuit, isolation monitoring, HVIL	
	(high voltage interlock loop), MSD (manual service disconnect), Fuses etc.,	
	Overview of favorable and unfavorable storage conditions, impact of temperature on	
	batteries.	
	Mobility and Connectors: Various types of chargers and energy management	6
	strategies, Connected Mobility and Autonomous Mobility- Emobility. Connectors-	
4	Types of EV charging connector, North American EV Plug Standards, DC Fast	
	Charge EV Plug Standards in North America, CCS (Combined Charging System),	
	CHAdeMO, Tesla, European EV Plug Standards,	

5	Drives for EV: Introduction to Elect drivetrain system; System design con drivetrain components; Machines and Magnet Synchronous Motor (PMSM motors(PMBLDCM), Switched reluctar induction motor (IM); Control of Electric	etromagnetic Energy Conversions is iderations, rating and sizing drives for traction and EVs M), Permanent Magnet Bruce motors, synchronous reluce c Drives; Bidirectional DC-DC	on; Electric 5 of electric 5 : Permanent ushless DC tance motor, converters.
Tex	Books:		
1	Electric Vehicle Technology Explained	James Larminie, John Lowry	John Wiley & Sons, Ltd.
2 1	Electric and Hybrid Vehicles: Design Fundamentals	Iqbal Husain	Iqbal Husain
Refe	erences:		
1			a . a.
1	and Trends	Nil Patel, Akash Kumar Bhoi, Sanjeevkumar Padmanaban, Jens Bo	Springer Singapore
		Holm-Nielsen	
2	Battery Management Systems of Electric and Hybrid Electric Vehicles	Nicolae Tudoroiu (editor)	MDPI AG
3	Heavy-Duty Electric Vehicles: From	Shashank Arora, Alireza	Butterworth-
	Concept to Reality	Tashakori Abkenar, Shantha	Heinemann
		Gamini Jayasinghe, Kari	
4		Tammi	
4	Trends and Progress in Electric Vahiolog	I nandavarayan Maiyalagan	CKC Press
	riends and riogress in Electric Venicles	(editor), rerumai Elumatai (editor)	

MEN17406 Solar Photovoltaics 3-0-0:3	Course Code: MEN17406	Solar Photovoltaics	Credits: 3-0-0:3
--------------------------------------	--------------------------	---------------------	---------------------

Prerequisites: NIL

Course Outcome

CO1	Understand the basics of solar energy and solar photovoltaics.
CO2	Understand the principle of solar cells, materials, types of solar cells.
CO3	Analyse the performances of photovoltaic systems.
CO4	Apply the solar PV technology for power generation and other use.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	2	2	2	2	2	2	2	3	3	2
CO2	3	2	2	2	3	3	3	3	2	2	2	3	3	2
CO3	3	3	3	3	3	3	3	3	3	3	2	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3	2	3	3	3

Unit	Content	Lectures
1.	Introduction: Basics of energy and electricity, DC and AC Power,	8
	Measurement of electrical quantities, The Sun, The Earth, Solar spectrum.	
	Importance of Solar Energy, Types of Solar radiation (Terrestrial and Extra-	
	terrestrial regions, Beam radiation, Diffuse radiation), Air mass, Albedo,	
	Irradiance. Attenuation, Sun-Earth Angles, Solar time, Solar radiation on	
	inclined surface and horizontal surface, Measuring Instruments for solar	
	radiation e.g. Pyrheliometer, Pyranometer, Sun-shine recorder.	
2.	Solar photovoltaics: Introduction and history of solar photovoltaics: Direct	6
	Energy Conversion, Advantages and Disadvantages of PV, PV system	
	configurations.	
3.	Solar cell materials and battery: Types of Solar cell, materials and their	6
	generation, intrinsic and extrinsic material, p- & n- type materials, Organic	
	solar cells, Perovskite solar cells, fabrication of solar cells, Losses in PV cells,	
	Basics of Battery and its parameters.	
4.	Performance parameters of PV: Module and Array, fill factor, conversion	6
	efficiency, packing factor, open circuit voltage (V_{oc}), Short circuit current (I_{sc}),	
	Standard Test Condition, I-V characteristics, P-V characteristics, factors	
	affecting performance of solar cell, PV module, PV array.	
5.	Solar PV Systems: Types of Solar PV power plants, Stand alone system, grid	6
	connected system, Hybrid Solar PV system. Other Applications of PV (Urban,	
	Rural and Remote location use of PV such as BiPV, Solar PV vehicles, solar	
	PV water pump, Street light etc.), National and International programmes for	
	promotion of solar photovoltaic.	

Text Books:

- 1. Solar Photovoltaics: Fundamentals, Technologies and Applications <u>C. S.Solanki</u>, PHI Publications.
- 2. Solar Energy, S P Sukhatme, J K Nayak, McgrawHill Publications.
- 3. Solar Energy Fundaments, Design, Modeling & Applications G.N. Tiwari, Narosa Publications.

REFERENCES:

- 1. Solar Photovoltaic Technology and Systems-A manual for technicians, Trainers and Engineers -<u>C. S. Solanki</u>, PHI Publications.
- 2. Principles of Solar Energy, Frank Krieth& John F Kreider, John Wiley, New York.
- 3. Solar Energy Engineering S. Kalogirou, Academic Press.

Quality Engineering

Credits: 3-0-0:3

Pre-requisites: Measurement and Metrology

COURSE OUTCOME:

S.N.	Outcomes
CO1	Understand control charts for the analysis of observational data. Apply control charts for the
	real world industry or service organisations problems
CO2	Understand types of sampling plan and apply different sampling plans during the inspection
	of lots of products.
CO3	Understand and apply the concept of Reliability, Availability and Maintainability
CO4	Apply Quality Design concept for Parameter and Tolerance Design

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO2	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	2	3	3	2	2	3	3	3
CO4	3	3	3	3	3	3	2	3	3	2	2	3	3	3

Unit	Details	No. of
		hours
1	Introduction-Concept of quality, basic statistical concepts, Control of accuracy	4
	and precision, Process capability, standardization and interchangeability;	
	Statistical Quality Control: Objectives, Applications, organization, cost aspects,	
	theory of statistical tolerance.	
2	Control Charts- General theory of Control Charts, Shewhart control chart for	12
	process control; Control Charts for variables such as X, R Control Charts for	
	charts for attributes such as c and p charts; Acceptance control chart; Cumulative	
	Sum Control Charts; Process Capability, Cause- Effect and Pareto diagrams.	
3	Acceptance Sampling- Multiple and Sequential Sampling Plans, Multi-	8
	Continuous Sampling Plan, Acceptance Sampling by Variables, Advantages	
	limitations. Sampling plans using different Criteria. Comparison of various types	
	of sampling plans. Rectifying Inspection	
4	Reliability, Availability and Maintainability- Introduction to reliability,	6
	Bathtub curve, Series and Parallel system; MTBF, Evaluation of Availability and	
	Maintainability.	
5	Quality Design- Design of experiment concept, System, Parameter and	6
	Tolerance Design; Concept of Robust Design, Taguchi Concept - Orthogonal	
	Arrays and S/N ratio.	

Text/Reference Books:

1. Statistical Quality Control; Eugene L. Grant, Richard S. Leavenworth, Tata Mc Graw Hill, 2000

2. Introduction to quality control, Jamieson A, Reston, 2004.

Reference Books:

- 1. Statistical Quality control; A Modern Introduction 6th Edition, Douglas C. Montgomery, 2010
- 2. Juran's Quality Planning and Analysis, by Frank. M.Gryna Jr. McGrawHill
- 3. Reliability Engineering, (3rdEdition), by LS Srinath, Affiliated East West Pvt Ltd, 1991.
- 4. Reliability Engineering, by E Bala Guruswamy, Tata McGraw Hill, 1994.
- 5. Quality Engineering Using Robust Design, Madhav S. Phadke, Pearson, 2008.
- 6. Handbook of Reliability, Availability, Maintainability and Safety in Engineering Design.
- Stapelberg Rudolph Frederick, ISBN: 9781848001749, 9781848001749.

7. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, First Indian Edition, Cengage Learning, 2012.

Course Code: MEN17407	Total Quality Management	Credits: 3-0-0:3
Prerequisites: NIL		

Course Outcomes:

CO1	Student able to understand the concept of quality management, techniques, frameworks and models
CO2	Students able to understand the TQM philosophies and implementation
CO3	Students able to attain knowledge on TQM principles, team work and continuous improvement process
CO4	Students able to apply the modern quality management tools in developing the business strategy
CO5	Students able to understand the implications of quality management standards and systems

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		1			2	2	2	1	1	1	2	2	2
CO2	1					1	2	2	2	1	2	1	2	2
CO3	1		2			1	2	2	2	1	2	2	2	2
CO4	1		1			1	2	2	1	1	1	1	2	2
CO5	1		1			2	2	2	1	1	1	2	2	2

Unit	Details	No. Hrs
1	Introduction: Basic concepts of TQM, TQM approach, Models and Frame works for TQM. Quality award models and new model for TQM.	6
2	TQM Philosophies: Deming Philosophy, Juran Trilogy, Crosby zero Defect Philosophy, Barriers to TQM Implementation, Benefits of TQM, Characteristics of successful quality leader, Contributions of Gurus of TQM, Case studies.	6
3	TQM Principles: Leadership theory and practices, Creating the leadership system, strategy and organization structure, leadership for Quality creating or changing the culture – effective leadership – excellence in leadership. Strategic quality planning, Quality councils-employee involvement, motivation, Empowerment, training and development, Team and Teamwork, Quality circles, recognition and reward, performance appraisal, Continuous process improvement, PDCE cycle, 5S, Kaizen, Improvement Strategies, Types of Problems, Problem solving Methods, Reengineering.	7
4	TQM Tools and Techniques: Design, innovation and improvement – the design process – quality function deployment (QFD) – the house of quality (HOQ), building a HOQ, QFD process – specifications and standards. Bench marking and POKA YOKE.	6
5	TQM quality systems: Quality and environment management systems: Introduction to IS/ISO 9004:2000 – – Elements, implementation and documentation of Quality system. Guidelines for performance improvements, Quality Audits - registration - ISO 14000 series standards – concepts of ISO 14001 – requirements of ISO 14001 – benefits of EMS – integrating ISO 14000 with ISO 9000 – relationship between health and safety.	7

Text Books:

1	Besterfiled D. H.	'Total	Quality	Pearson	Education A	Asia –
		Management'		2005		
2	SubburajRamasamy	Total	Quality	Tata	McGraw	Hill
		Management		Publishir	ng Company	Ltd.,
				New Del	hi, 2005	

References:

1	Joel E. Ross	Total Quality	Taylor and Franscis
		Management	Limited
2	James R. Evans and	"The Management and	8th Edition, First Indian
	William M. Lindsay	Control of Quality"	Edition, Cengage Learning,
			2012.
3	ISO 9000: Concepts,		Tapan P Bagchi,
	Methods and		A.H.Wheeler, 1999
	Implementation,		
4	L. Suganthi, Anand A.	Total Quality	PHI Learning, 2009
	Samuel,	Management 1st Edition	
5	R. Ashley Rawlins,	Total Quality	Autherhouse, 2008
		Management	

Course Code:	Vocational Training/STTP	Credits:
MEN17351/MEN17352		0-0-6:3

Prerequisites: NIL

Course Outcomes:

CO1	Student will get an exposure to an industrial environment.
CO2	Apply the knowledge of the subjects studied to solve and analyze the real world problems.
CO3	Student will be able to interact and work coherently in a team environment, and manage
	projects in multidisciplinary environments.
CO4	Student will be able to make presentation and write report effectively.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	3	2	3	1	1	3	3	3
CO2	3	3	3	3	3	1	2	2	3	1	2	3	3	3
CO3	-	-	-	-	-	2	-	3	3	3	3	3	3	3
CO4	-	-	-	-	2	1	1	2	2	3	2	3	3	3

Semester VIII

Course Code:
MEN18351/MEN18352

Major Project

Credits: 0-0-28:14

Prerequisites: NIL

Course Outcomes:

CO1	Student will be able to apply the knowledge of the subjects studied to solve and analyze the
	real world problems.
CO2	Apply the knowledge of the subjects studied to fabricate or model the solutions for the real
	world problems.
CO3	Student will be able to interact and work coherently in a team environment, and manage
	projects in multidisciplinary environments.
CO4	Student will be able to make presentation and write report effectively.

Course Articulation Matrix:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	3	3	2	3	1	1	3	3	3
CO2	3	3	3	3	3	1	2	2	3	1	2	3	3	3
CO3	-	-	-	-	-	2	-	3	3	3	3	3	3	3
CO4	-	-	-	-	2	1	1	2	2	3	2	3	3	3

<u>##</u>